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Abstract

An important function in the design of a fault-tolerant computer system is the syn-
chronization of the clocks of the redundant processing elements. Due to the subtleties
involved in reasoning about the behavior of failed components, it is necessary to prove
that systems purporting to be fault-tolerant will survive an arbitrary failure.

In 1987, Schneider presented a general proof of correctness encompassing several fault-
tolerant clock synchronization algorithms. Subsequently, Shankar verified Schneider’s
proof using the mechanical proof system EHDM. This proof ensures that any system
satisfying its underlying assumptions will provide Byzantine fault-tolerant clock synchro-
nization. This thesis explores the utility of Shankar’s mechanization of Schneider’s theory
for the verification of clock synchronization systems.

A mechanically checked proof is presented which provides a general solution for one
constraint of the existing theory. Also, the fault-tolerant midpoint convergence function
is proven, using EHDM, to satisfy the requirements of the theory. Other constraints are
modified to provide simpler verification conditions. Furthermore, the theory is extended to
allow general proofs of transient fault recovery. Use of the revised theory is then illustrated
with the verification of an abstract design of a fault-tolerant clock synchronization system.



Chapter 1

Introduction

NASA Langley Research Center is currently involved in the development of a formally
verified Reliable Computing Platform (RCP) for real-time digital flight control systems
[1,2, 3]. An often quoted requirement for critical systems employed for civil air transport is
a probability of catastrophic failure less than 10~ for a 10 hour flight [4]. Since failure rates
for digital devices are on the order of 10~® per hour [5], hardware redundancy is required
to achieve the desired level of reliability. While there are many ways of incorporating
redundant hardware, the approach taken in the RCP is the use of identical redundant
channels with exact match voting (see [1, 2] and [3]).

A critical function in a fault-tolerant system is that of synchronizing the clocks of
the redundant computing elements. The clocks must be synchronized in order to provide
coordinated action among the redundant sites. Although perfect synchronization is not
possible, clocks can be synchronized within a small skew.

Schneider [6] demonstrates that many fault-tolerant clock synchronization algorithms
can be represented as refinements of a single proven correct paradigm. Shankar [7] provides
a mechanical proof (using EHDM [8]) that Schneider’s schema achieves Byzantine fault-
tolerant clock synchronization, provided that eleven constraints are satisfied. Some of

the constraints are assumptions about physical properties of the system and can not be



established formally. This thesis explores the utility of Shankar’s mechanically verified
theory as a top-level specification for a fault-tolerant clock synchronization system. First,
some of the assumptions employed by Shankar are addressed in a general fashion, and
then an abstract design of a fault-tolerant clock synchronization circuit is shown to satisfy
the necessary constraints of the theory.

The fault-tolerant clock synchronization circuit is intended to be part of a verified
hardware base for the RCP. The primary intent of the RCP is to provide a verified fault-
tolerant system which is proven to recover from a bounded number of transient faults. The
current model of the system assumes (among other things) that the clocks are synchronized
within a bounded skew [2]. It is desirable that the clock synchronization circuitry also be
able to recover from transient faults. Originally, Lamport and Melliar-Smith’s Interactive
Convergence Algorithm (ICA) [9] was to be the basis for the clock synchronization system,
the primary reason being the existence of a mechanical proof that the algorithm is correct
[10]. However, modifications to ICA to achieve transient fault recovery are unnecessarily
complicated. The fault-tolerant midpoint algorithm of [11] is more readily adapted to
transient recovery.

The synchronization circuit is designed to tolerate arbitrarily malicious permanent,
intermittent and transient hardware faults. A fault is defined as a physical perturbation
altering the function implemented by a physical device. Intermittent faults are permanent
physical faults which do not constantly alter the function of a device (e.g. a loose wire). A
transient fault is a one shot short duration physical perturbation of a device (e.g. caused
by a cosmic ray or other electromagnetic effect). Once the source of the fault is removed,
the device can function correctly.

Most proofs of fault-tolerant clock synchronization algorithms are by induction on the
number of synchronization intervals. Usually, the base case of the induction, the initial
skew, is assumed. The descriptions in [6, 7, 9, 10] all assume initial synchronization with

no mention of how it is achieved. Others, including [11, 12, 13] and [14] address the issue



of initial synchronization and give descriptions of how it is achieved in varying degrees of
detail. In proving an implementation correct, the details of initial synchronization cannot
be ignored. If the initialization scheme is robust enough, it can also serve as a recovery
mechanism from multiple correlated transient failures (as is noted in [14]).

The chapters in this thesis are ordered by decreasing generality. The most general
results are presented first, and are applicable to a number of designs. The use of the
theory is then illustrated by application to a specific design. In Chapter 2, the defini-
tions and constraints required by Shankar’s proof are presented. Also in Chapter 2, the
additional definitions and constraints required for a general extension to the theory are
introduced. Chapter 3 presents a general extension to the theory which should simplify
future verification efforts. Chapter 4 presents mechanically checked proofs that the fault-
tolerant midpoint convergence function satisfies the constraints required by the theory.
In Chapter 5, a hardware realization of a fault tolerant clock synchronization circuit is
introduced. It is shown that this circuit satisfies the remaining constraints of the theory.
Finally, the mechanisms for achieving initial synchronization and transient recovery are
presented. Modifications to the theory to support the transient recovery arguments are

also presented.



Chapter 2

Clock Definitions

Any implementation that satisfies the definitions and constraints in Shankar’s report will

provide the following guarantee [7].

Theorem 2.1 (bounded skew) For any two clocks p and q that are nonfaulty at time
t

[VCp(t) — VCy(t)| < 6

That is, the difference in time observed by two nonfaulty clocks is bounded by a small
amount. This gives the leverage needed to reliably build a fault-tolerant system. Fig-
ure 2.1 illustrates a possible four clock system. Each of the nonfaulty clocks provides a
time reference, VC,, to it’s processing element. This reference is guaranteed to be approx-
imately synchronized with the corresponding value on any other good clock in the system,
for all time ¢. This guarantee is provided by an internal physical clock PC, and a dis-
tributed fault-tolerant clock synchronization algorithm executing in each of the redundant

channels. A generalized view of the algorithm employed is:

do forever {
exchange clock values
determine adjustment for this interval
determine local time to apply correction
when time, apply correction}



algorithm algorithm
PC, | [ " [PC
4 A
algorithm algorithm
PC. | [ " [PCq
lVCC l VCy

Figure 2.1: Four Clock System

This chapter presents the definitions and conditions to be met to verify this result.
Much of it is taken from sections 2.1 and 2.2 of Shankar’s report documenting his mecha-
nization of Schneider’s proof [7]. Modifications to the conditions needed for this revision

of the theory are also presented.

2.1 Notation

A fault-tolerant clock synchronization system is composed of an interconnected collection
of physically isolated clocks. Each redundant clock will incorporate a physical oscillator
which marks passage of time. Each oscillator will drift with respect to real time by a small
amount. Physical clocks derived from these oscillators will similarly drift with respect to
each other. There are two different views of physical clocks relating different perceptions
of time. Real time will be denoted by lower case letters, e.g. ¢,s: Var time. Typically,

time is taken as ranging over the real numbers. Clock time will be represented by upper



case letters, e.g. T,S: Var Clocktime. While Clocktime is often treated as ranging over
the reals [11, 7, 10], a physical realization of a clock marks time in discrete intervals. It is
more appropriate to treat valﬁes of type Clocktime as representing some integral number
of ticks; in this presentation Clocktime is assumed to range over the integers. The unit for
both time and Clocktime is the tick. There are two sets of functions associated with the

physical clocks!: functions mapping real time to clock time for each process p,
PC, : time — Clocktime;

and functions mapping clock time to real time,
pcp : Clocktime — time.

The intended semantics are for PC,(t) to represent the reading of p’s clock at real time
t, and for pc,(T') to denote the earliest real time that p’s clock reads 7. By definition,
PCp(pcp(T)) =T, for all T. In addition, we assume that pc,(PCp(t)) < t < pep(PCp(t) +
1).

The purpose of a clock synchronization algorithm is to make periodic adjustments to
local clocks to keep a distributed collection of clocks within a bounded skew of each other.
This periodic adjustment makes analysis difficult, so an interval clock abstraction is used
in the proofs. Each process p will have an infinite number of interval clocks associated
with it, each of these will be indexed by the number of intervals since the beginning of the
protocol. An interval corresponds to the elapsed time between adjustments to the virtual
clock. These interval clocks are equivalent to a process’ physical clock plus an offset. As
with the physical clocks, they are characterized by two functions: C;; : time — Clocktime;

and ic; : Clocktime — time. If we let adj; : Clocktime denote the cumulative adjustment

!Shankar’s presentation includes only the mappings from time to Clocktime. The mappings from Clock-
time to time are added here because it is a more natural representation for some of the proofs.



made to a clock as of the ¢th interval, we get the following definitions for the ith interval

clock:

ICH(t) PCy(t) + adjy

Il

ic;,(T) = pcp(T—adj;).

From these definitions it is simple to show IC}(ici(T)) = PCyp(pey(T — adji)) + adj}, = T,
for all T. Sometimes it is more useful to refer to the incremental adjustment made in a
particular interval than to use a cumulative adjustment. By letting ADJ;; = adj}’;+1 - adj;;

we get the following equations relating successive interval clocks:

IC(t) ICi(t)+ ADJ;

icitN(T) = icy(T — ADJ}).

A virtual clock, VC,, : time — Clocktime, is defined in terms of the interval clocks by the

equation

VCy(t) = ICi(t), for t;, < t < £+,

The symbol t; denotes the instant in real time that process p begins the :th interval clock.
Notice that there is. no mapping from Clocktime to time for the virtual clock. This is
because V' C, is not necessarily monotonic; the inverse relation might not be a function
for some synchronization protocols.

Synchronization protocols provide a mechanism for processes to read each others
clocks. The adjustment is computed as a function of these readings. In Shankar’s presen-
tation, the readings of remote clocks are captured in function @;j‘l : process — Clocktime,
where @i,”‘l(q) denotes process p’s estimate of g¢’s ¢th interval clock at real time t;“
(i.e. ICi(ti*1)). Each process executes the same (higher-order) convergence function,

cfn : (process, (process — Clocktime)) — Clocktime, to determine the proper correction to



apply. Shankar defines the cumulative adjustment in terms of the convergence function as

follows:

adj;"*'1 = cfn(p, ®;+1) - PCp(t;,'*'l)
adjy = 0.

The following can be simply derived from the preceding definitions:

V() = IO = efn(p, 031
IC';"'l(t) = c¢fn(p, O;;‘H) + PC,(t) — PCp(t;+1)

ADJ, = cfn(p, OiY) — ICi(t5).

Using some of these equations and the conditions presented in the next section, Shankar
mechanically verified Schneider’s paradigm. Chapter 3 presents a general argument for
satisfying one of the assumptions of Shankar’s proof. The argument requires some mod-
ifications to Shankar’s constraints, and introduces a few new assumptions. In addition,
some of the existing constraints are rendered unnecessary.

A new constant, R : Clocktime, is introduced which denotes the expected duration of a
synchronization interval as measured by clock time (i.e. in the absence of drift and jitter,
no correction is necessary for the clocks to remain synchronized. In this case the duration
of an interval is exactly R ticks). We also introduce a collection of distinguished clock
times S* : Clocktime, such that S¢ = iR + S° and S° is a particular clock time in the first
synchronization interval. We also introduce the abbreviation s;', defined to equal ic;;(S .

The only constraints on S* are that for each nonfaulty clock p, and real times ¢; and t,,

(VCp(t1) = 8 A (VCp(t2) = 8) Dty = 1g,



and there exists some real time ¢, such that
VC,(t) = §°.

The rationale for these constraints is that we want to unambiguously define a clock time
in each synchronization interval to simplify the arguments necessary to bound separation
of good clocks. If we choose a clock time near the instant that an adjustment is applied,
it is possible that the VC will never read that value (because the clock has been adjusted
ahead), or that the value will be reached twice (due to the clock being adjusted back).
In [11], the chosen unambiguous event is the clock time that each good processor uses
to initiate the exchange of clock values. For other algorithms, any clock time sufficiently
removed from the time of the adjustment will suffice. A simple way to satisfy these
constraints is to ensure for all ¢, S% 4+ ADJ;, < T;,"H < S ADJ;',, where T;"'l =
ICE(t5+1).

Table 2.1 summarizes the notation for the key elements required for a verified clock
synchronization algorithm. Table 2.2 presents the many constants used in the next section.
They will be described when they are introduced in the text, but are included here as a

convenient reference.

2.2 The Conditions

This section introduces the conditions required by Shankar’s mechanical proof of Schnei-
der’s Theory. The changes needed for the general extension to the theory are also intro-
duced here. The old conditions are those from Shankar’s mechanization of Schneider’s
theory [7]. The order in which Shankar presented them is preserved for convenient refer-
ence to his report. However, this makes the presentation of the revised (new) conditions
awkward. Much of the required notation for the revised conditions require a forward refer-

ence. Table 2.2 should provide an intuitive feel for some terms that have not yet been fully
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PCp(t) | The reading of p’s physical clock at real time .
pcp(T) | The earliest real time that p’s physical clock reads T'.
ICi(t) | The reading of p’s ith interval clock at real time t.
icﬁ,(T) The earliest real time that p’s i¢th interval clock reads T'.
VCp(t) | The reading of p’s virtual clock at time .
T° | Clocktime at beginning of protocol (for all good clocks).
Ti*! | Clocktime for VC, to switch from ith to (i + 1)th interval clock.
t;, | The real time that processor p begins the ith synchronization
interval (5! = ict(TpH)).
R | Clocktime duration of a synchronization interval.
59 | Special Clocktime in initial interval.
S¢ | Unambiguous clock time in interval ¢; S¢ = iR + S°
s;, Abbreviation for ic;',(S .
adj, | Cumulative adjustment to p’s physical clock up through ¢,
ADJ: | Abbreviation for adj;'H — adjp.
O3t | An array of clock readings (local to p) such that 0%(q) is p’s
reading of ¢’s ith interval clock at #5t7.
cfn(p, (-);“) Convergence function executed by p to establish VCp(t;“).
Table 2.1: Clock Notation
6s : Clocktime | Bound on skew at beginning of protocol.
6 : Clocktime | Bound on skew for all time.
p: number | Allowable drift rate for a good clock, 0 < p < 1.
B : time | Maximum elapsed time from s;', to sg (p and ¢ working).
B time | Maximum elapsed time from ¢, to t; (p and ¢ working).
Bread : time | Maximum separation between s, and s, for p to
accurately read g, 8’ < Bread < R/2.
Tmin © time | Minimum elapsed time from t;', to t;"‘l for good p.
Tmaz © time | Maximum elapsed time from ! to ¢;*! for good p.
A : Clocktime | Bound on error reading a remote clock.
A number | Reformulated error bound for reading a remote clock.
a(f +2A"): number | Bound on ADJ;; for good p and all .

Table 2.2: Constants
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developed in the text. Where possible, it will be shown how some of the old conditions

can be derived from the new.

Old Condition 1 (initial skew) For nonfaulty processors p and q

|PCp(0) — PC,(0)] < b5

This condition will be replaced by the following;:

New Condition 1 (bounded delay init) For nonfaulty processes p and g,

|t9 — 2] < B’ — 2p(S° — T°)

A constraint similar to the original condition can be easily derived from this new con-
dition using the constraint on clock drift?. An immediate consequence of this and the
revised form of condition 2 is that [s§ — s9| < 3.

The rate at which a good clock can drift from real-time is bounded by a small positive

constant p. Typically, p < 1073,

Old Condition 2 (bounded drift) There is a nonnegative constant p such that if
clock p is nonfaulty at time s,s > t, then

(1= p)(s— 1) < PCy(s) — PCy(t) < (14 p)(s — 1)

This characterization of drift is not quite accurate, and is only valid if Clocktime ranges
over the rationals or reals. If we treat Clocktime as an integer, the inequality does not
hold for all s, ¢, or p. We restate the condition for the mapping from Clocktime to time.
To allow for future modifications to the theory which allow for recovery from transient
faults, we also remove the implicit assumption that nonfaulty clocks have been so since

the beginning of the protocol.

201d Condition 1 is an immediate consequence of Lemma 2.1.1 in Appendix A
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New Condition 2 (bounded drift) There is a nonnegative constant p such that if
p’s clock is nonfaulty during the interval from T to S,(S > T), then

(8 =T)/(1+ p) < pep(§) — pep(T) < (1 +p)(S - T)

The benefit of changing the lower bound to (S — T)/(1 + p) is that we can derive the

following constraint on the mapping from time to Clocktime:

Corollary 2.1 If p’s clock is nonfaulty during the interval from pcy(T') to pey,(S), S > T,

(pep(S) = pep(T))/ (1 + p) < PCy(pep(5)) = PCo(pen(T)) < (1 + p)(pep(S) — pen(T))

This is not as strong an assumption as Shankar’s original condition. However, if the unit of
time is taken to be a tick of Clocktime and Clocktime ranges over the integers, we can then
derive the following bound on drift that is sufficient for preserving Shankar’s mechanical

proof (with minor modifications):

Corollary 2.2 If p’s clock is not faulty during the interval from t to s then,

s =8)/(1 +p)| < PCyp(s) — PCp(t) < [(1 + p)(s —1)].

Note that using Shankar’s algebraic relations defining various components of clocks, we
can use these constraints to bound the drift of any interval clock (ic}) for any i.
The following corollary to bounded drift limits the amount two good clocks can drift

with respect to each other during the interval from T to S.

Corollary 2.3 If clocks p and q are not faulty during the interval from T to S,

[pep(S5) = peq(8)| < Ipep(T) — peg(T)| + 2p(S — T)

Shankar stated the above corollary with respect to the original formulation of bounded

drift.
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We can also derive an additional corollary (this adapted from lemma 2 of [11]).

Corollary 2.4 If clock p is not faulty during the interval from T to S,

|(pep(S) = §) — (pep(T) = T)| L pIS - T

A similar relation holds for PC.

Shankar assumes a bound on the duration of the synchronization interval.

Old Condition 3 (bounded interval) For nonfaulty clock p

0<rmin < t;+1 - t;} < Tmaz

The terms 7,,;, and 7,,., are uninstantiated constants. In our formulation, we- assume
that a nominal duration (R) of an interval is determined from the implementation. We
set a lower bound on R by placing restrictions on the events S¢. This is done by bound-
ing the amount of adjustment that a nonfaulty process can apply in any synchronization
interval. The term a(8’ + 2A’) will be shown to bound |ADJ;| for nonfaulty process p.
The function e is introduced in condition 11, 8’ is a bound on the separation of clocks at
a particular Clocktime in each interval, and A’ bounds the error in estimating the value of

a remote clock.

New Condition 3 (bounded interval) For nonfaulty clock p,

S'+a(f +20") < T < §7F — (B’ + 20)

A trivial consequence is that R > 2a(8’ + 2A"). Clearly, we can let 7, = (R — (8’ +
2A"))/(1+p) and rpee = (14 p)(R + (B’ +2A')). The values for p, R, A’, §’, and o() will
be determined by the implementation. The constraints on these values will be presented

later.

Shankar and Schneider both assume the following in their proofs. The condition states
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that the elapsed time between two processes starting their ¢th interval clock is bounded.
This property is closely related to the end result of the general theory (bounded skew),

and should be derived in the context of an arbitrary algorithm.

Old Condition 4 (bounded delay) For nonfaulty clocks p and q

RERARY

The related property, that for nonfaulty clocks p and g,
s, — spl < B

is proven independently of the algorithm in Chapter 3. This gives sufficient information
to prove bounded delay directly from the algorithm, however, this proof depends upon the
interpretation of T;;“. Two interpretations and their corresponding proofs are also given
in Chapter 3.

The next condition states that all good clocks begin executing the protocol at the same

instant of real time (and defines that time to be 0).

Old Condition 5 (initial synchronization) For nonfaulty clock p

0 _
=0

This is clearly unsatisfiable, and will be discarded. It is used in proving the base case
of the induction proof which establishes that good clocks are within §s of other good
clocks, immediately following applying a correction. By defining tg = icg(TO) we gain
sufficient leverage for that proof. T° is some constant clock time known to all good clocks
(i.e. T° is the clock time in the initial state). This just states that all nonfaulty clocks
start the protocol at the same Clocktime.

Since we do not want process ¢ to start its (¢ + 1)th clock before process p starts its
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ith, Shankar states a nonoverlap condition

Old Condition 6 (nonoverlap)

ﬂ .<_ Tmin

This, with bounded interval and bounded delay, ensures that for good clocks p and gq,

t;, < tf;"l. We restate the condition in terms related to this presentation

New Condition 6 (nonoverlap)

B < (R-a(f'+2A))/(1+p)

This essentially defines an additional constraint on R; namely, that R > (1 + p)8 +
a(f + 2A).

All clock synchronization protocols require each process to obtain an estimate of the
clock values for other processes within the system. Error in this estimate can be bounded,

but not eliminated.

Old Condition 7 (reading error) For nonfaulty clocks p and q

[IC () — 05t (9)l < A

However, in stating this condition an important consideration was overlooked. In some
protocols, the ability to accurately read another processor’s clock is dependent upon those
clocks being already sufficiently synchronized. Therefore, we add a precondition stating
that the real time separation of s;; and 3; is bounded by some [reaq. The precise value of
Dread Tequired to ensure bounds on the reading error is determined by the implementation,
but in all cases #' < fread < R/2. Another useful observation is that an estimate of a
remote clock’s value is subject to two interpretations. It can be used to approximate the

difference in Clocktime that two clocks show at an instant of real time, or it can be used
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to approximate the separation in real time that two clocks show the same Clocktime.

New Condition 7 (reading error) For nonfaulty clocks p and g, if |s, — si| <
ﬂread}

1. |IC#H) = 05+ (o)l = (051 (@) — IC,(55TY)) — ICH(45H) — IC,(tH) < A
2. (05t (q) — ICH (M) = (icy(TyH") — icy(T ) < A
3. 1(0,1(g) — IC; (1)) — (icy(87) — ic ()| < A’

The first clause just restates the existing read error condition to illustrate that the read
error can also be viewed as the error in an estimate of the difference in readings of Clock-
time, i.e. the estimate allows us to approximately determine another clocks reading at a
particular instant of time. The second clause recognizes that this difference can also be
used to obtain an estimate of the time that a remote clock shows a particular Clocktime.?
The third clause is the one used in this paper; it relates real time separation of clocks
when they read S° to the estimated difference when the correction is applied. A bound
on this could be derived from the second clause, but it is likely that a tighter bound can
be derived from the implementation. Since the guaranteed skew is derived, in part, from
the read error, we wish this bound to be as tight as possible. For this reason, we add it
as an assumption to be satisfied in the context of a particular implementation.

The remaining constraints are unaltered in this presentation. They are exactly as

Shankar stated them. The first of these is that there is a bound to the number of faults

which can be tolerated.

Old Condition 8 (bounded faults) At any time t, the number of faulty processes
s at most F'.

3For these relations, elements of type Clocktime and time are both treated as being of type number.
Clocktime is a synonym for integer, which is a subtype of number, and time is a synonym for number.
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Synchronization algorithms execute a convergence function cfn(p, ) which must satisfy
the conditions of translation invariance, precision enhancement, and accuracy preservation
irrespective of the physical constraints on the system. Shankar mechanically proves that
Lamport and Melliar-Smith’s Interactive Convergence function [9] satisfies these three
conditions. A mechanically checked proof that the fault-tolerant midpoint function used
by Welch and Lynch [11] satisfies these conditions is presented in Chapter 4, and was
previously reported in [15]. Schneider presents proofs that a number of other protocols
satisfy these properties in [6].

Translation invariance states that the value obtained by adding X :Clocktime to the
result of the convergence function should be the same as adding X to each of the clock

readings used in evaluating the convergence function.

Old Condition 9 (translation invariance) For any function 8 mapping clocks to

clock values,
cfn(p,(An: 8(n) + X)) = cfn(p,0) + X

Precision enhancement is a formalization of the concept that, after executing the con-

vergence function, the values of interest should be close together.

Old Condition 10 (precision enhancement) Given any subset C of the N clocks
with |C| > N — F, and clocks p and g in C, then for any readings v and 6 satisfying
the conditions

1. foranyl in C, |[y(£) - 0()| < X

2. foranyl, m in C, |y(£) —y(m)| <Y

8. for anyl, m in C, |6(£) — §(m)| <Y
there is a bound w(X,Y) such that

lefn(p,v) — cfn(q,0)| < =(X,Y)

Accuracy preservation formalizes the notion that there should be a bound on the amount
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of correction applied in any synchronization interval.

Old Condition 11 (accuracy preservation) Given any subset C' of the N clocks
with |C| > N — F, and clock readings 0 such that for any !l and m in C, the bound
|6(£) — 6(m)| < X holds, there is a bound o(X) such that for any p and q in C

lefn(p, 6) — 6(g)] < a(X)

For some convergence functions, the properties of precision enhancement and accuracy
preservation can be weakened to simplify arguments for recovery from transient faults.
Precision enhancement can be satisfied by many convergence functions even if p and ¢ are
not in C. Similarly, accuracy preservation can often be satisfied even when p is not in C.

In the course of his proof of Theorem 2.1, Shankar derives the following additional

conditions for an algorithm to be verified in this theory.
1. w(2A + 20p,6s + (2p(Tmaz + B) + 2A) < b5
2. 65+ 2Prmax <6

3. 0(65 + (zp("'maz + ,3) + 2A) + A+ pﬂ <é

These have been modified to account for differences introduced by restricting Clocktime to
the integers. The bounds need to be altered to correspond to the revised version of bounded
drift. Shankar’s version of bounded drift was converted to correspond to Corollary 2.2.%
The mechanical proof has been re-run, yielding the following constraints. The arguments
used are identical to those presented by Shankar. The only difference is that additional
manipulations were needed with the floor and ceiling functions in order to complete the
proof. Appendix A contains the proof chain analysis confirming that the following are

sufficient to prove Theorem 2.1.

1. w([2A + 28p] + 1,05 + [(2p(Tmez + B) + 2A] 4+ 1) < b5

4This is stated as axioms rate_1 and rate_2 in module clockassumptions.
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2. 05+ [2prmax] +1<6
3. a(bs+ [(20(Tmaz + B) +2AT + 1) + A+ [2pB] +1 <6

Since p is typically very small (< 1075), it appears that the above reworked constraints are

overly conservative. It should be possible to prove Theorem 2.1 assuming the following:
1. 4prmez+ w([2A + 2], | +20]) < B
2. [(1+4 p)B' + 207 mas] < 6
3. a(|f +2A' )+ A+ [2p8]+1<6.

An informal proof sketch can be found in Appendix A. Chapter 3 uses the new conditions
presented here, as well as the existing constraints on the convergence function to provide

a general proof of bounded delay (condition 4).



Chapter 3

A General Solution for Bounded

Delay

Schneider’s schema assumes that It; - thI < B for good clocks p and g, where t; denotes
the real time that clock p begins its ¢th interval clock (this is condition 4 in Shankar’s
presentation). Anyone wishing to use the generalized proof to verify an implementation
correct must prove that this property is satisfied in the context of their implementation.
In the case of the algorithm presented in {11], this is a non-trivial proof.

The difficulty stems, in part, from the inherent ambiguity in the interpretation of t;',"'l .
Relating the event to a particular clock time is difficult because it serves as a crossover
point between two interval clocks. The logical clock implemented by the algorithm un-
dergoes an instantaneous shift in its representation of time. Thus the local clock readings
surrounding the time of adjustment may show a particular clock time twice, or never.
The event tit! is determined by the algorithm to occur when IC;(t) = Tgt!, ie. TiH
is the clock time for applying the adjustment ADJ; = (adj;',+1 - adj;). This also means
that t5! = ici(T:*'). In an instantaneous adjustment algorithm there are at least two

possibilities:
L Ti = (i+ )R+ T° or

20
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2. Tt = (i + 1)R + T° — ADJ},

A more stable frame of reference is needed for bounding the separation of events. Welch
and Lynch exploit their mechanism for reading remote clocks to provide this frame of
reference. Every clock in the system sends a synchronization pulse when its virtual clock
reads §' = iR + 5%, where S° denotes the first exchange of clock values. Let s% be an
abbreviation for ic;(S %). If we ignore any implied interpretation of event 3;,, and just select
St which satisfy condition 3 we have sufficient information to prove bounded delay for an

arbitrary algorithm.

3.1 Bounded Delay Offset

The general proof follows closely an argument given in [11]. The proof adapted is that of
Theorem 4 of [11, section 6]. We wish to prove for good clocks p and g that |t;fJ ~t]<B.

To establish this we first prove the following;:

Theorem 3.1 (bounded delay offset) For nonfaulty clocks p and q, and for i > 0.
(a) Ifi > 1, then |[ADJS | < a(B' + 27).
(b) lsp — sl < B
Proof: By induction on ¢. The base case (¢ = 0) is trivial; part (a) is vacuously true and

(b) is a direct consequence of new conditions 1 and 2.

Assuming that (a) and (b) are true for ¢ we proceed by showing they hold for 7 + 1

(a)

We begin by recognizing that (a) is an instance of accuracy preservation. ADJ §f“)“1 =
adji*! — adji = cfn(p, O5t!) — ICL(t5H). Since ICE(#5H) = O (p) (no error in reading

own clock), we have an instance of accuracy preservation:

|efn(p, O3+1) — O (p)] < a(X).
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All that is required is to show that ' + 2A’ substituted for X satisfies the hypotheses of

accuracy preservation.

We need to establish that for good £, m,
(O5(0) — O3 (m)] < ' + 24"
We know from the induction hypothesis that for good clocks p and ¢,

st — si| < B

Using reading error and the induction hypothesis we get for nonfaulty clocks p and ¢*

(051} (q) — IC}(551)) = (s — s < A
We proceed as follows:

1077(6) — O3 (m)
= [(O5(£) — Ot (m)) + (ICL(E) — ICE(t5H1))
+ (s — sb) + (sh = sb) + (b — i)
< |sh = sh| 4 [(OFF1(£) — ICH(EH)) — (s — sb)]
+ (051 (m) — ICH(E1)) — (5 — sh)|

IBI+2AI

IA

We get the last step by substituting £ and m for p and g respectively in the induction

hypothesis, then using reading error twice, substituting first £ for ¢ and then m for gq.

1Recall that in this formulation, values of type time and Clocktime are both promoted to type number.
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(b)
All supporting lemmas introduced in this section implicitly assume both the induction

hypothesis and part (a) for i + 1. In Welch and Lynch’s presentation they infroduce a

variant of precision enhancement. We restate it here in the context of the general protocol:

Lemma 3.1.1 For good clocks p and q,
(s}, — s8) — (ADJ% — ADJ3)| < w(2A + 2,8’ + 2A")

Proof: We begin by recognizing that ADJ = cfn(p, (\.O5(£) — ICE(51))) (and sim-

ilarly for ADJ ;) A simple rearrangement of the terms give us

(s}, — st) — (ADJ}, — ADJ';)I

= |(ADJ} - si)— (ADJ, — si)|

We would like to use translation invariance to help convert this to an instance of precision
enhancement. However, translation invariance only applies to values of type Clocktime (a
synonym for integer). We need to convert the real values s;; and sfl to integer values, while
preserving the inequality. We do this via the integer floor and ceiling functions. Without

loss of generality, assume that (ADJ:, —sb) > (ADJ; — st).

|(ADJ;, - s}) — (ADJ, - s})|
< |(ADJL — [si]) — (ADJ: — [si])]
= |efn(p, (M.O3FY(€) — TCi(EiH) — [si]))

—cfn(q, (MO (L) — IC(#7+) — [s]))]

All that is required is to demonstrate that if (A.O5F(£) — ICi(ti+!) — |si]) = v and

(MO (L) - ICi(ti+1) — [s4]) = 0, they satisfy the hypotheses of precision enhancement.
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We know from reading error and the induction hypothesis that
(O3 (0) — ICH(551)) = (55 — s < A
To satisfy the first hypothesis of precision enhancement we notice that
[(AL.05F1(€) — IC}(t5H) — L5p])(0) = (M.OGF () = IC(5+") = [s31)()]
= |(O;F(6) — ICH(t5t) = Isp)) = (©5F1(0) = IC(t+") = [si1)]
(057 (8) — ICH(#5H) — (Lsp) — )

—((05H1(0) = IC#+)) — ([s] = s))

< 2M' 42

Therefore, we can substitute 2A’ + 2 for X to satisfy the first hypothesis of precision
enhancement.
To satisfy the second and third hypothesis we proceed as follows (the argument pre-

sented is for (A.O51(£) — ICE(1it1) — |s,]) = 7). We need a Y such that
(VG5 (€) — TC(E) — 55 1)(@) — (MBI (€) — ICE(E) — [sb])(m)| < Y.
We know that

(A0 () = IC(#5F) ~ [, )(£) = (M.O571(€) — IC(t5+1) = |sp])(m)]
= (0110 = ICH(5) — Lsp]) — (O3 (m) — ICH(t5+") — [s,))]

= 10,1 (0) - O;F (m)).

The argument in part (a) shows that this value is bounded by S’ +2A’ which is the desired

Y for the remaining hypotheses of precision enhancement. |
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Now we bound the separation of ic;t!(T) and ici*!(T) for all T'.

Lemma 3.1.2 For good clocks p and q, and clock time T,
i (T) — i (T)] < 20(IT = S| + (B + 2A7) + (20" + 2, ' + 20")

Proof: The proof is taken verbatim (modulo notational differences) from [11, Lemma 10].

Note that icit!(T) = ici(T — ADJ}) and ici*(T) = ici(T — ADJY). Now

licgt(T') — icgt (7))
< l|ici(T — ADJY) — s, — (T — ADJ;, — §%)|
+|ici(T — ADJ}) — st — (T — ADJ: — §%)|

+|(sh — s§) — (ADJ;, — ADJ})|

The three terms are bounded separately. By Corollary 2.4 of bounded drift (Condi-

tion 2), we get

lici(T — ADJ%) — s}, — (T — ADJ% — §%)]
< pIT -8 —ADJ}|

< p(IT - S + «(B' + 2A")), from part (a) for i + 1.

The second term is similarly bounded. Lemma 3.1.1 bounds the third term. Adding the

bounds and simplifying gives the result. =

This leads to the desired result:

Lemma 3.1.3 For good clocks p and q,

|sitt — S5 < 2p(R+ (B + 2A")) + w(2A' + 2,8’ + 20") < B’
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Proof: This is simply an instance of Lemma 3.1.2 with $**! substituted for 7. ]

This completes the proof of Theorem 3.1. Algebraic manipulations on the inequality
2p(R+ (B +20)) + w(2A + 2,6 +20") < B

give us an upper bound for R.

3.2 Bounded Delay for Two Algorithm Schemata

We begin by noticing that both instantaneous adjustment schemes presented at the be-
ginning of this chapter allow for a simple derivation of a # that satisfies the condition of
bounded delay (old condition 4). Notice that knowledge of the algorithm is required in

order to fully establish this property.

Theorem 3.2 (bounded delay) For nonfaulty clocks p,q employing either of the two

instantaneous adjustment schemata presented, there is a 8 such that,
Ity —tg| <8

Proof: It is important to remember that ¢5t! = ich(Ti+!) = iciP (T + ADJ}).

1. When T3+ = (i + 1)R+ T9, let 8 = 2p(R — (S° - T°)) + 3.
In this case, since T;;‘H = T(;:'H = (i + 1)R + TP, all that is required is a simple
application of Corollary 2.3 (page 12) and expanding the definition of S%, i.e. 5% =
iR+ S°.

|t — 857 < s, — sgl + 20((i + DR+ T° - §%) < B+ 20(R - (5° - T°))

2. When Ti+! = (i+ 1)R+ T° — ADJ}, let 8 = ' — 2p(5° - T°).
This case requires the observation that Tt + ADJ} = Ti+! + ADJ; = ((i+ 1)R +
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T°)). By substituting ((¢ + 1)R + T°)) for T in Lemma 3.1.2 and remembering that
St = iR+ S° we get

[t — ¥ < 2p((R - (S° = T°)) + a8’ + 2A")) + (27’ + 2,8’ + 2A")
‘We know that
2p(R+ (B +2A")) — 2p(8° — T°) + w(2A’ + 2,8 + 2A") < B — 2p(S° — T°)

Simple algebra completes the proof of this case.

New condition 1 establishes |tg - tgl < B for both of the above schemata. [

All down stream proofs performed by Shankar need not be altered. However, it is

possible that some bounds and arguments can be improved.

3.3 EHDM Proofs of Bounded Delay

The EHDM (version 5.2) proofs and supporting definitions and axioms are in the modules
delay, delay2, delay3 and delay4. IATRX formatted listings of these modules are in the
appendix.? Some of the revised constraints presented in Chapter 2 are in module delay.
The most difficult aspect of the proofs was determining a reasonable predicate to express
nonfaulty clocks. Since we would like to express transient fault recovery in the theory, it is
necessary to avoid the axiom correct_closed from Shankar’s module clockassumptions® The

notion of nonfaulty clocks is expressed by the following from module delay.

2 A slightly modified version of Shankar’s module clockassumptions is also included in the appendix for

completeness.
3This axiom has not yet been removed from the general theory. None of the proofs of bounded delay

offset depend on it, however.
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correct_during: function[process, time, time — bool] =
(Ap,t,8:t < sA(Vity:t<t; Aty < s D correct(p,ty1)))

wpred: function[event — function[process — bool]]

rpred: function[event — function[process — bool]]

wvr_pred: function[event — function[process — bool]] =

(Ai:(Ap: wpred(i)(p) V rpred(i)(p)))
wpred_ax: Axiom count(wpred(i),N)> N — F
wpred_correct: Axiom wpred(é)(p) D correct_during(p, t}, t5+1)
wpred_preceding: Axiom wpred(i + 1)(p) D wpred(:)(p) V rpred(4)(p)
wpred_rpred_disjoint: Axiom —(wpred(¢)(p) A rpred(¢)(p))
wpred_bridge: Axiom

wvr_pred(i)(p) A correct_during(p, t5t1,15+2) > wpred(i + 1)(p)

Also, module delay3 states the following axiom:

recovery_lemma: Axiom
delay_pred(i) A ADJ_pred(i + 1)
A rpred(i)(p) A correct_during(p, t5+1, 15+2) A wpred(i + 1)(g)

») |3;')+1 _ 33+1| <pg
There are two predicates defined, wpred and rpred. Wopred is used to denote a working
clock, i.e. it is not faulty and is in the proper state. Rpred denotes a process that is
not faulty, but has not yet recovered proper state information. Correct is a predicate
taken from Shankar’s proof which states whether or not a clock is fault-free at a particular
instance of real time. Correct_during is used to denote correctness of a clock over an interval
of time. In order to reason about transient recovery it is necessary to provide an rpred
that satisfies these relationships. If we do not plan on establishing transient recovery, let
rpred(i) = (Ap : false). In this case, axioms recovery_lemma and wpred_rpred_disjoint are
vacuously true, and the remaining axioms are analogous to Shankar’s correct_closed. This
reduces to a system in which the only correct clocks are those that have been so since the
beginning of the protocol. This is precisely what should be true if no recovery is possible.

The restated property of bounded drift is captured by axioms RATE_1 and RATE.2.

The new constraints for bounded interval are rts_new_1 and rts_new_2. Bounded delay init
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is expressed by bnd_delay_init. The third clause of the new reading error is reading_error3.
The other two clauses are not used in this proof. An additional assumption not included
in the constraints given in Chapter 2 is that there is no error in reading your own clock.
This is captured by read_self. All of these can be found in module delay. In addition
there were a few assumptions included defining interrelationships of some of the constants
required by the theory.

The statement of Theorem 3.1 is bnd_delay_offset in module delay2. The main step
of the inductive proof for part (a) is captured by good_Readclock. This, with accuracy
preservation, was sufficient to establish bnd_delay_offset_ind_a. Part (b) is more involved.
Lemma delay_prec_enh in module delay2 is the machine checked version of Lemma 3.1.1.
Module delay3 contains the remaining proofs for part (b). Lemma 3.1.2 is presented as
bound_future. The first two terms in the proof are bounded by Lemma bound_futurel, the
third by delay_prec_enh. Lemma bound_FIXTIME completes the proof.

Module delay4 contains the proofs that each of the proposed substitutions for G satisfy
the condition of bounded delay. Option 1 is captured by optionl_bounded._delay, and option
2 is expressed by option2_bounded_delay. The EHDM proof chain status, demonstrating
that all proof obligations have been met, can also be found in the appendix. The task
of mechanically verifying the proofs also forced some revisions to some hand proofs in an
earlier draft of this paper. The errors revealed by the mechanical proof included invalid
substitution of reals for integers and arithmetic sign errors.

Module new_basics restates old condition 3 as rtsO_new and rtsl_new using the substi-
tutions suggested on page 13 for 7,,,; and 7,,;,. These substitutions are proven to bound
t;‘*‘l — t;, for each of the proposed algorithm schemata in module rmax_rmin. The revised
statement of condition 6 can also be found in module new_basics; it is axiom nonoverlap.
The modules new_basics and rmax_rmin provide the foundations for a mechanically checked

version of the informal proof of Theorem 2.1 given in Appendix A.
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3.4 New Theory Obligations

This revision to the theory leaves us with a set of conditions which are much easier to
satisfy for a particular implementation. To establish that an implementation is an instance

of this extended theory requires the following;

1. Prove the properties of translation invariance, precision enhancement and accuracy

preservation for the chosen convergence function.

2. Derive bounds for reading error from the implementation (new condition 7, clauses
1 and 3).

3. Solve the derived inequalities listed at the end of Chapter 2 using values determined

from the implementation and properties of the convergence function.
4. Satisfy the conditions of bounded interval and nonoverlap, using the derived values.

5. Identify data structures in the implementation which correspond to the algebraic
definitions of clocks. Show that the structures used in the implementation satisfy
the definitions.

6. Show that the implementation correctly executes an instance of the following algo-

rithm schema:

10
do forever {
o exchange clock values o
o determine adjustment for this interval o
o determine 7*t! (local time to apply correction) o
when ICi(t) = T**! apply correction; 1 «— i + 1

}

7. Provide a mechanism for establishing initial synchronization (|t) —9| < 8'—2p(5° -
T9)). Ensure that # is as small as possible within the constraints of the aforemen-

tioned inequalities.

8. If the protocol does not behave in the manner of either instantaneous adjustment
option presented above, it will be necessary to use another means to establish V¢ :
|t3, — 2| < B from Vi : [s}, — s3] < 6.
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Requirement 1 will be established in Chapter 4; requirements 2, 3, 4, 5, and 6 will be
demonstrated for an abstract design in Chapter 5; and requirement 7 will be established
in Chapter 6. The inequalities used in satisfying 3 will be the ones developed in the course
of this work, even though the proof has not yet been subjected to mechanical verification.
The proof sketch in appendix A is sufficient for the current development. Requirement 8 is

trivially satisfied, because the design described here uses one of the two verified schemata.



Chapter 4

Fault-Tolerant Midpoint as an

Instance of Schneider’s Schema

The convergence function selected for the design described in Chapter 5 is the fault-
tolerant midpoint used by Welch and Lynch in [11]. The function consists of discarding
the F largest and F smallest clock readings, and then determining the midpoint of the

range of the remaining readings. Its formal definition is

cfrmip(p,0) = le(FH) ;0(N_F)J
where 6(,,) returns the mth largest element in #. This formulation of the convergence func-
tion is different from that used in [11]. A proof of equality between the two formulations
is not needed since it is shown that this formulation satisfies the properties required by
Schneider’s paradigm. For this function to make sense, it is clear that we want the number
of clocks in the system to be greater than twice the number of faults, N > 2F + 1. In
order to complete the proofs, however, we need the stronger assumption that N > 3F +1.
Dolev, Hélpern and Strong have proven that clock synchronization is impossible (without

authentication) if there are fewer than 3F + 1 processes [16].

32
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This section presents proofs that cfnasrp(p,8) satisfies the properties required by
Schneider’s theory. The EHDM proofs are presented in the appendix and assume that
there is a deterministic sorting algorithm which arranges the array of clock readings.

The properties presented in this chapter are applicable for any clock synchronization
protocol which employs the fault-tolerant midpoint convergence function. All that will be
required for a verified implementation is a proof that the function is correctly implemented

and proofs that the other conditions have been satisfied.

4.1 Translation Invariance

Translation invariance states that the value obtained by adding Clocktime X to the result
of the convergence function should be the same as adding X to each of the clock readings

used in evaluating the convergence function.

Old Condition 9 (translation invariance) For any function 8 mapping clocks to
clock values,

efn(p, (A : 0(n) + X)) = cfn(p, 6) + X

Translation invariance is evident by noticing that for all m:

(/\l . 9([) + X)(m) = 0(m) + X

and

J+X

l("(ﬂl) +X) + (Ov-r) + X) J _ ["(Fn) +0v—r)
) = )

4.2 Precision Enhancement

Precision enhancement is a formalization of the concept that, after executing the conver-

gence function, the values of interest should be close together. The proofs do not depend
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upon p and ¢ being in C, so that precondition was removed for the following weakened

restatement of precision enhancement.

Old Condition 10 (precision enhancement) Given any subset C of the N clocks
with |C| > N — F, then for any readings v and 8 satisfying the conditions

1. foranyl in C, |y(1)-6()| < X

2. foranyl, m in C, |[y(1)—y(m)| <Y

3. foranyl, m in C, |6(1) —8(m)| <Y
there is a bound n(X,Y) such that

lefn(p,v) — cfn(q,0)] < ©(X,Y)

Theorem 4.1 Precision Enhancement is satisfied for cfnaprp(p,9) if

©(X,Y) = PQ: +X]

One characteristic of ¢fnarrp(p, ?) is that it is possible for it to use readings from faulty
clocks. If this occurs, we know that such readings are bounded by readings from good
clocks. The next few lemmas establish this fact. To prove these lemmas it was expedient

to develop a pigeon hole principle.

Lemma 4.1.1 (Pigeon Hole Principle) If N is the number of clocks in the system,

and C1 and C3 are subsets of these N clocks,
|Cil+|Cl 2 N+EkD|CinCa| 2k

This principle greatly simplifies the existence proofs required to establish the next two

lemmas. First, we establish that the values used in computing the convergence function
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are bounded by readings from good clocks.

Lemma 4.1.2 Given any subset C of the N clocks with |C| > N — F and any reading 0,

there ezxist p,q € C such that,

0(p) > O(r41) and O(n_py > 6(q)

Proof: By definition, [{p : 0(p) > §(r41)} > F + 1 (similarly, |{q : dnv_F) > 0(q)}| >

F +1). The conclusion follows immediately from the pigeon hole principle. n

Now we introduce a lemma that allows us to relate values from two different readings

to the same good clock.

Lemma 4.1.3 Given any subset C of the N clocks with |C| > N — F and readings 6 and

v, there exists a p € C such that,

8(p) > O(n—F) and V(ri1) > V(p)-

Proof: Recalling that N > 3F + 1, we can apply the pigeon hole principle twice. First to

establish that |{p: 68(p) > O n_r)} NC| > F + 1, and then to establish the conclusion. =

A immediate consequence of the preceding lemma is that the readings used in com-
puting ¢fnarip(p, 8) bound a reading from a good clock.
The next lemma introduces a useful fact for bounding the difference between good

clock values from different readings.

Lemma 4.1.4 Given any subset C' of the N clocks, and clock readings 8 and Y such that
for any l in C, the bound |6(1) — 7(1)| < X holds, for all p,q € C,

8(p) > 6(g) A Y(q) 2 7(p) D 10(p) — ()| £ X
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Proof: By cases,

e 1 6(p) > Y(g), then |8(p) — 7(q)| < [6(p) - V(p)| < X
e I 6(p) < ¥(g), then |8(p) - ()] < [6(g) — ()] < X

This enables us to establish the following lemma.

Lemma 4.1.5 Given any subset C of the N clocks, and clock readings 8 and Y such that

for any l in C, the bound |8(1) — Y(1)| < X holds, there exist p,q € C such that,

6(p) 2 9(F+1),
7(q) = Y(r41), and

16(p) — 7(9)| £ X.

Proof: We know from Lemma 4.1.2 that there are p;, ¢y € C that satisfy the first two

conjuncts of the conclusion. There are three cases to consider:

o If Y(p1) > Y(q1), let p=gq = p1.
o If 8(q1) > 0(p1),let p=gq = ¢u.

e Otherwise, we have satisfied the hypotheses for Lemma 4.1.4, so we let p = p; and

q9=1q-

We are now able to establish precision enhancement for ¢fnprrp(p,¥) (Theorem 4.1).

Proof: Without loss of generality, assume c¢fnarrp(p, ) > cfnmin(y, 6).

|efrarrp(p, V) — efnarrp(y, 9)|
_ “7(F+1) +7(N—F)J 3 [9(F+1> +9<N—F)J|

2 2
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< I7(F+1) + Yw-rF) — (O@F41) + 0(N_F))|
- 2

Thus we need to show that

Y(F+1) + Yv-rF) = (OF41) + Ov—F)| £ Y +2X

By choosing good clocks p, ¢ from Lemma 4.1.5, p; from Lemma 4.1.3, and ¢, from the

right conjunct of Lemma 4.1.2, we establish

P41y + Yv-rF) — (OF+1) + Ov-F))|

< g +7(p1) — 6(p1) — 0(q1)l
17(¢) + (8(p) — 8(p)) + Y(p1) — 8(p1) — 8(q1)]
< 18(p) — 0(@)l + 17(a) — 6(p)| + [V(p1) — 6(p1)]

< Y 42X (by hypotheses and Lemma 4.1.5)

4.3 Accuracy Preservation

Accuracy preservation formalizes the notion that there should be a bound on the amount
of correction applied in any synchronization interval. The proof here uses a weakened

form of accuracy preservation. The bound holds even if p is not in C.

Old Condition 11 (accuracy preservation) Given any subset C of the N clocks
with |C| > N — F, and clock readings 8 such that for any l and m in C, the bound
|6(1) — 8(m)| < X holds, there is a bound a(X) such that for any q in C

lefn(p,6) — 6(g)] < (X)
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Theorem 4.2 Accuracy preservation is satisfied for cfapp(p,0) if o(X) = X.

Proof: Begin by selecting p; and ¢; using Lemma 4.1.2. Clearly, (p1) > cfnarrn(p, 0)

and c¢fnaprrp(p, 0) > 6(g1). There are two cases to consider:

o If 6(q) < cfoprip(p,8), then |efrarrp(p, 8) — 6(q)| < |6(p1) — 0(9)| < X.
o If 6(q) > cfnpip(p,0), then |cfrarip(p, 0) — 0(q)| < 16(q1) — 0(q)| < X. n

4.4 EHDM Proofs of Convergence Properties

This section presents the important details of the EEDM proofs that cfnarrp(p, 8) satisfies
the convergence properties. In general, the proofs closely follow the presentation given
above. The EEDM modules used in this effort are listed in the appendix.

One underlying assumption for these proofs is that N > 3F + 1. This is a well known
requirement for systems to achieve Byzantine fault-tolerance without requiring authen-
tication [16]. The statement of this assumption is axiom No_authentication in module
ft_mid_assume. As an experiment, this assumption was weakened to N > 2F 4+ 1. The
only proof corrupted was that of Lemma good_between in module mid3. ’i‘hjs corresponds
to Lemma 4.1.3 of this chapter. Lemma 4.1.3 is central to the proof of precision enhance-
ment. It establishes that for any pair of nonfaulty clocks, there is at least one reading
from the same good clock in the range of the readings selected for computation of the
convergence function. This prevents a scenario in which two or more clusters of good
clocks continue to drift apart, because the values used in the convergence function for any
two good clocks are guaranteed to overlap. Consider a system with 3F clocks. If F clocks
are faulty, then it is possible for two clusters of nonfaulty clocks to form, each of size F.

Label the clusters C; and C3. Without loss of genera]ity, assume that the clocks in C; are
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faster than the clocks in (5. In addition, the remaining F' clocks are faulty, and are in
cluster Cr. If the clocks in Cr behave in a manner such that they all appear to be fast to
the clocks in C; and slow to the clocks in Csq, clocks in each of the clusters will only use
readings from other clocks within their own cluster. There is nothing to prevent the two
clusters from drifting further apart. The one additional clock ensures that for any pair of
good clocks, the ranges of the readings used in the convergence function overlap.
Another assumption added for this effort states that the array of clock readings can
be sorted. Additionally, a few properties one would expect to be true of a sorted array
were assumed. These additional properties used in the EHDM proofs are (from module

clocksort):

funsort_ax: Axiom

t < jAjF <N D IHfunsort(F)(2)) > d(funsort(9)(5))

funsort_trans_inv: Axiom

k < N D (I(funsort(( A g : 9(q) + X))(k)) = F(funsort(F)(k)))

cnt_sort_geq: Axiom

k < N D count(( Ap: J(p) > d(funsort(I)(k))), N) > k

cnt_sort_leq: Axiom

k < N D count(( Ap : I(funsort(9)(k)) > ¥(p)),N)> N —k+1

The appendix contains the proof chain analysis for the three properties stated above.
The proof for translation invariance is in module mid, precision enhancement is in mid3,
and accuracy preservation is in mid4.

A number of lemmas were added to (and proven in) module countmod. The most
important of these is the aforementioned pigeon hole principle. In addition, Lemma
count_complement was moved from Shankar’s module ica3 to countmod. Shankar’s com-
plete proof was re-run after the changes to ensure that nothing was inadvertently de-

stroyed. Basic manipulations involving the integer floor and ceiling functions are presented



40

in module floor_ceil. In addition, the weakened versions of accuracy preservation and trans-
lation invariance were added to module clockassumptions. The restatements are axioms
accuracy_preservation_recovery_ax and precision_enhancement_recovery_ax respectively. The
revised formulations imply the original formulation, but are more flexible for reasoning
about recovery from transient faults in that they do not require that the process eval-
uating the convergence function be part of the collection of working clocks. The proofs
that cfrprrp(p, @) satisfies these properties were performed with respect to the revised
formulation. The original formulation of the convergence function properties is retained
in the theory because not all convergence functions satisfy the weakened formulae.
Chapter 5 presents a hardware design of a clock synchronization system that uses the
fault-tolerant midpoint convergence function. It will be shown that the design satisfies

the remaining constraints of the theory.



Chapter 5

Design of a Clock

Synchronization System

This chapter describes a design of a fault-tolerant clock synchronization circuit which
satisfies the constraints of the theory. This design assumes that the network of clocks is
completely connected. Section 5.1 presents an informal description of the design, and then

Section 5.2 demonstrates that the design meets requirements 2 through 6 from Section 3.4

(page 30).

5.1 Description of Design

As in other synchronization algorithms, this one consists of an infinite sequence of syn-
chronization intervals, 7, for each clock p; each interval is of duration R + ADJ;;. It is
assumed that all good clocks know the index of the current interval (a simple counter is
sufficient, provided that all good channels start the counter in the same interval). Further-
more, it is assumed that the network of clocks contains a sufficient number of nonfaulty
clocks and that the system is already synchronized. In other words, the design described in
this chapter preserves the synchronization of the redundant clocks. The issue of achieving

initial synchronization is addressed in Chapter 6. The major concern is when to begin the

41
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next interval; this consists of both determining the amount of the adjustment and when
to apply it. For this, we require readings of the other clocks in the system and a suitable
convergence function. As stated in Chapter 4, the selected convergence function is the
fault-tolerant midpoint.

In order to evaluate the convergence function to determine the (¢ + 1)th interval clock,
clock p needs an estimate of the other clocks when local time is 7, ;"‘1. All clocks partici-
pating in the protocol know to send a synchronization signal when they are @ ticks into
the current interval;! i.e. when LC’;,(t) = @, where LC is a counter measuring elapsed

time since the beginning of the current interval. Our estimate, 9;“, of other clocks is
0t (q) = T, + (Q — LC}(tpy))

where t,, is the time that p recognizes the signal from g. The value (Q — LCi(tpq)) gives
the difference between when the local clock p expected the signal and when it observed
a signal from g. The reading is taken in such a way, that simply adding the value to
the current local clock time gives an estimate of the other clock’s reading at that instant.
It is not important that ¢ be near the end of the interval. For this system, we assume
the drift rate, p, of a good clock is less than 107%; this corresponds to the drift rate of
commercially available oscillators. By selecting R to be < 10* ticks?, the maximum added
error of 2pR < 0.2 caused by clock drift does not appreciably alter the quality of our
estimate of a remote clock’s value. In this system, p will always receive a signal from itself
when LC;,(t) = ). Therefore there is no error in reading its own clock.

Chapter 3 presents two options for determining when to apply the adjustment. This

design employs the second option, namely that

i+l _ (s 0 )
;M =(i+1)R+T° - ADJ,,.

1This is actually a simplification for the purpose of presentation. Clock p sends its signal so that it will
be received at the remote clock when LC,(t) = Q.
2This corresponds to a synchronization interval of 1 msec for a 10MHz clock.
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Recalling that 5t = ici(Tit!) = icit}(Tit! + ADJ}), it is easy to determine from the

algebraic clock definitions given in Section 2.1 and the above expression, that
cfnpip(p, O5Y) = ICEH (45H) = (i + 1)R + T°.

In this design 7° = 0, so we just need to ensure that cfrarrp(p, ©5t!) = (i + 1)R. Using

translation invariance and the definition for @;',“ given above, we get,
cfrmip(p, (Aq.05T(q) = T;H)) = (i + )R — T, = ADJ;,
Since @5t (q) — Tit! = (Q — LCj(tpg)), we have
ADJ, = cfrmin(p, (Aq-(Q — LC(tp))))-

In Chapter 4, the fault-tolerant midpoint convergence function was defined as follows:

cfrmip(p,0) = le(FH) ;H(N—F )J :
Assuming that we are able to select the (N — F)th and (F + 1)th readings, computing
this function in hardware consists of a simple addition followed by an arithmetic shift
right.® All that remains is to determine the appropriate readings to use. We know that
we will observe at least N — F pulses during the synchronization interval.* Since Q is
fixed and LC is non-decreasing during the interval, the readings (Aq.Q — LC;(tpq)) are
sorted into decreasing order by arrival time. Suppose t,, is when the (F' + 1)th pulse is
recognized; (Q — LC;;(tpq)) must be the (F + 1)th largest reading. A similar argument

applies to the (N — F')th pulse arrival. A pulse counter gives us the necessary information

3An arithmetic shift right of a two’s complement value preserves the sign bit, while truncating the least

significant bit.
“Remember that this chapter assumes that there are a sufficient number (N — F) of synchronized

nonfaulty clocks participating in the protocol.
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Figure 5.1: Informal Block Model

to select appropriate readings for the convergence function. Once N — F pulses have been

observed, both the magnitude and time of adjustment can be determined. At this point,

the circuit just waits until LC(t) = R + ADJ} to begin the next interval.

Figure 5.1 presents an informal block model of the clock synchronization circuit. The

circuit consists of the following components:

N pulse recognizers (only one pulse per clock is recognized in any given interval),
a pulse counter (triggers events based upon pulse arrivals),

a local counter LC' (measures elapsed time since beginning of current interval),
an interval counter (contains the index ¢ of the current interval),

one adder for computing the value —(Q — LC}(tp,)),

one register each for storing —0r,,) and —0n_py,

an adder for computing the sum of these two registers, and

a divide-by-2 component (arithmetic shift right).
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The pulses are already sorted by arrival time, so it is natural to use a pulse counter to
select the time-stamp of the (¥ +1)th and the (N — F)th pulses for the computation of the
convergence function. As stated previously, all that is required is the difference between
the local and remote clocks. Let § = (Aq.05%(g) — Ti*1). When the F + 1st (N — Fth)
signal is observed, register —8(r;1) (—6(v_-r)) is clocked, saving the value —(Q — LC’;(t)).
After N — F signals have been observed, the multiplexor selects the computed convergence
function instead of . When LC;;(t) —(—cfrpmip(p, (9))) = R it is time to begin the ¢+ 1st
interval. To do this, all that is required is to increment ¢ and reset LC to 0. The pulse

recognizers, multiplexor select and registers are also reset at this time.

5.2 Theory Obligations

The requirements referred to in this section are from the list presented in Section 3.4 on
page 30.

Since this design was developed, in part, from the algebraic definitions given in Sec-
tion 2.1, it is relatively easy to see that it meets the necessary definitions as specified by

requirement 5. The interval clock is defined as follows:
ICi(t) = iR+ LCy(t)
From the description of the design given above, we know that
ICiHY(t) = ICi(t) + ADJ;.

LCY(t) corresponds to PCy(t) as described in Chapter 2. The only distinction is that,
in the implementation, LC is repeatedly reset. Even so, it is the primary mechanism
for marking the passage of time. The definition for VCp(t) follows directly from the

definition. The time reference provided to the local processing elements is the pair, (¢,
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LC;;(t)), with the expected interpretation that the current elapsed time since the beginning
of the protocol is iR + LCj(t).

The above circuit cycles through the following states:

‘1. From LC;;(t) = 0 until the (N — F)th pulse is received, it determines the readings

needed for the convergence function.
2. It uses the readings to compute the adjustment, ADJ;;.

3. When LC;(t)-&-ADJ;; = R, it applies the correction by resetting for the next interval.

In parallel with the above, when LC’;;(t) = @, it transmits its synchronization signal
to the other clocks in the system. This is clearly an instance of the general algorithm
schema presented as requirement 6. State 1, in conjunction with the transmission of the
synchronization signal, implements the exchange of clock values. State 2 determines both
the adjustment for this interval and the time of application. State 3 applies the correction
at the appropriate time.

Requirement 2 demands a demonstration that the mechanism for exchanging clock
values introduces at most a small error to the readings of a remote clock. The best that
can be achieved in practice for the first clause of condition 7 (page 16) is for A to equal
one tick. The third clause, however, includes real time separation, and a possible value
for A’ of approximately 0.5 ticks. We will assume these values for the remainder of this
thesis. A hardware realization of the above abstract design, with estimates of reading
error equivalent to these is presented in [17]. These bounds have not been established
formally. Preliminary research which may enable formal derivation of such bounds can be
found in [18].

Using the above values for reading error, we can now solve the inequalities presented
at the end of Chapter 2 (this is requirement 3). The inequalities used for this presentation
are those from the informal proof of Theorem 2.1 given in Appendix A. These inequalities

are:

1. 4p7imes + 7r(|_2Al + 2_] ’ I./B, + 2AIJ) <p
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2. [A+p)B + 207 mez] <6
3. a(|f/ +2N )+ A+ 28] +1 L 6.

We begin with the first; we would like to find the smallest 5’ which satisfies the
inequality. The bound 3’ can be represented as the sum of an integer and a real between
0 and 1. Let the integer part be B and the real part be 5. We know that pR < 0.1 and
that 7., is not significantly more than R. Therefore, we can let b = 4p7r,,,. =~ 0.4 and

reduce the inequality to the following;:
(|20 +2], |8 +20')) < B

The estimate for A’ is = 0.5 < 1 —5/2,s0 [2A'+ 2| = 3 and |8’ +2A’| = B + 1. Using

the 7 established for cfnaprrp(p, ) in Chapter 4, we get

The smallest B that satisfies this inequality is 7, therefore the above circuit can maintain
a B’ that is &~ 7.4 ticks. By using this value in the second inequality, we see that § > 8.
Remembering that o is the identity function for cfnarrp(p, @) and that A = 1, we get
6 > 11 ticks from the third inequality. The bound from the third inequality does not seem
tight, but it is the best proven result we have. Using these numbers with a 10MHz clock
rate, this circuit will synchronize the redundant clocks to within about one psec. Since
the frame length for most ﬂight control systems is on the order of 50 msec, this circuit
provides tight synchronization with negligible overhead.

All that remains in this chapter is to show that the above design satisfies requirement 4.
This consists of satisfying new conditions 3 and 6. We know that a(8’+2A’) < 9 and that
TP = 0. We can satisfy new condition 3 (page 13) by selecting S° such that 9 < §° < R—-9.
Since R ~ 10%, this should be no problem. For simplicity, let S° = Q. Also, since

R > (14 p)B + a(f + 2A’), new condition 6 (page 15) is easily met. There is one
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remaining requirement from the list presented in Section 3.4. Requirement 7, achieving

initial synchronization, will be established in the next chapter.



Chapter 6

Initialization and Transient

Recovery

This chapter establishes that the design presented in Chapter 5 meets the one remaining
requirement of the list given in Section 3.4. This requirement is to satisfy new condi-
tion 1, bounded delay init, from page 11. It is sufficient to establish this in the absence of
faults. However, a guaranteed automatic mechanism that establishes initial synchroniza-
tion would provide a mechanism for recovery from correlated transient failures. Therefore,
the arguments given for initial synchronization attempt to address behavior in the pres-
ence of faults, also. These arguments are still in an early stage of development, and are
therefore less formal than those of earlier chapters.

Finally, Section 6.2 addljesses guaranteed recovery from a bounded number of transient
faults. The EEDM theory presented in Section 3.3 presents sufficient conditions to establish
Theorem 3.1 while recovering from transient faults. Section 6.2 restates these conditions
and adds a few more that may be necessary to mechanically prove Theorem 2.1 while still
allowing transient recovery. Section 6.2 also demonstrates that the design presented in

Chapter 5 meets the requirements of these transient recovery conditions.

49
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6.1 Initial Synchronization

If we can get into a state which satisfies the requirements for precision enhancement:

Old Condition 10 (precision enhancement) Given any subset C of the N clocks
with |C| > N — F, and clocks p and q in C, then for any readings v and 8 satisfying
the conditions

1. foranyl inC, |[y(£)—0(¢)| < X

2. foranyl, m in C, |[y(£) —y(m)| <Y

3. foranyl, m inC, |0(£) — 6(m)| <Y
there is a bound =(X,Y) such that

lefr(p,v) — cfn(q,0)] < ®(X,Y)

where Y < |Bread + 2A’] and X = |[2A’ + 2], then a synchronization system using the
design presented in Chapter 5 will converge to the point where |sg — sg| < B in ap-
proximately log,(Y') intervals. Byzantine agreement will then be required to establish a
consistent interval counter.? It will be necessary to ensure that the clocks reach a state
satisfying the above constraints. Clearly, we would like Bieaq to be as large as possible.
To be conservative, we set fread = (min(@, R — Q) — a(|8’' + 2A’|))/(1 + p). Figure 6.1

illustrates the relevant phases in a synchronization interval. If the clocks all transmit their

R— ADJ}
B R >
'. __________ Q ..
| 1 ]
e e e Pt mm e e - - - >
Q - ﬁread ﬁread ﬂread

Figure 6.1: Synchronization Interval

!This condition is satisfied when for p,¢ € C, |s} — sf,| < Bread- During initialization, i = 0.
2For the purposes of this discussion, it is assumed that a verified mechanism for achieving Byzantine
agreement exists. Examples of such mechanisms can be found in [19] and [20].
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synchronization pulses within Breaq of each other, the clock readings will satisfy the con-
straints listed above. By letting @ = R/2, we get the largest possible symmetric window

for observing the other clocks. However, there may exist more appropriate settings for Q.

6.1.1 Mechanisms for Initialization

In order to ensure that we reach a state which satisfies the above requirements, it is
necessary to identify possible states which violate the above requirements. Such states
would happen due to the behavior of clocks prior to the time that enough good clocks are
running. In previous cases we knew we had a set C of good clocks with |C| > N — F. This
means that there were a sufficient number of clock readings to resolve 6(r1) and O v_p).
This may not be the case during initialization. We need to determine a course of action

when we do not observe N — F clocks. Two plausible options are:

Assumed Perfection — pretend all clocks are observed to be in perfect synchrony, or

End of Interval — pretend that unobserved clocks are observed at the end of the syn-
chronization interval, i.e. (LCi(t5) — Q) = (R — Q). Compute the correction based

upon this value.

The first option is simple to implement because no correction is necessary. When LC = R,
set both 7 and LC to 0, and reset the circuit for the next interval. To implement the second
option, perform the following action when LC = R: if fewer than N — F (F + 1) signals
are observed, then enable register —8x_r) (—0(r41)). This will cause the unobserved
readings to be (R — @) which is equivalent to observing the pulse at the end of an interval
of duration R.

We will discuss these two possibilities with respect to a four clock system. The argu-
ments for the more general case are similar, but are combinatorially more complicated.

We only consider cases in which at least one pair of clocks is separated by more than

ﬁrea.d'3

30Otherwise, the conditions enumerated above would be satisfied.
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Assumed Perfection

In this case, all operational clocks transmit their pulse within (1 + p)R/2 of every other
operational clock. We present one scenario consisting of four nonfaulty clocks to demon-
strate that this approach does not work. At least one pair of clocks is separated by more
than Breag.- A real implementation needs a certain amount of time to reset for the next
interval, so there is a short period of time, z, at the end of an interval where signals will
be missed. This enables a pathological case that can prevent a clock from participating
‘in the protocol, even if no faults are present. If two clocks are separated by (R — @) — z,
only one of the two clocks will be able to read the other. If additional clocks are added
that are synchronous with the hidden clock, they too will be hidden. This is illustrated in

Figure 6.2. Clearly, this is insufficient for initial synchronization. It is also clearly unable

O N i \ O Ve,
, B! X il X VCb- )
\ 1 , [ 1 VC.
L | A D . I\ VCy

Figure 6.2: Pathological Scenario

to guarantee recovery from a transient fault. Although the illustration shows @ = R/2, a

similar pathological scenario exists for any setting of Q.

End of Interval

The end of interval approach is an attempt to avoid the pathological case illustrated in
Figure 6.2. We begin by considering a case where only two clocks are actively participating.
Assume for the sake of this discussion that @ = R/2 (to maximize Sread). There are two

possibilities—their pulses are either separated by more than R/2 or less than R/2. If
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the former is true, then each clock computes the maximum adjustment of R/2, and will
transmit a pulse every 3R/2 ticks. If the latter, one clock will compute an adjustment
of R/4, and will transmit a pulse every 5R/4 ticks; while the other will compute an
adjustment between R/4 and R/2, and will converge to a point where it transmits a pulse
every 5R/4 ticks and is synchronized with the first clock. The two cases are illustrated

in Figure 6.3. If we add a third clock to the first scenario, it must be within R/2 of at

I \ 77727777 \ zzzz/'/'' VC.
777 N 7777 . VG,

|3a - 3b| > R/2
| 4 77722272 't pzzzA2 VCa,
I i p7zz2) n 222 Ve,

lsa - sbl < R/2

Figure 6.3: End of Interval Initialization

least one of the two clocks. If it is within R/2 of both, it will pull the two clocks together
quickly. Otherwise, the pair within R/2 of each other will act as if they are the only two
clocks in the system, and will converge to each other in the manner of the second scenario.
Since two clocks have an interval length of 5R/4, and the third has an interval length of
3R/2, the three clocks will shortly reach a point where they are within fBreaq of each other.
This argument also covers the case where we add a third clock to the second scenario. .
Once the three nonfaulty clocks are synchronized, we can add a fourth clock and use the
transient recovery arguments presented in Section 6.2 to ensure that it joins the ensemble
of clocks. This provides us with a sound mechanism to ensure initial synchronization

in the absence of failed clocks; we just power the clocks in order, with enough elapsed
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time between clocks to ensure that they have stabilized. This is sufficient to satisfy the
initialization requirement, but does not address re-initialization due to the occurrence of
correlated transient failures.

Unfortunately, if we begin with four clocks participating in the initialization scheme,

a pathological scenario arises. This scenario is illustrated in Figure 6.4. This figure

e 1 v 3 A 5 e 1 vVC,
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3 7] 1 7 1 7 1 7 VCy

Figure 6.4: Pathological End of Interval Initialization

illustrates that even with no faulty clocks, the system may converge to a 2-2 split; two
pairs synchronized with each other, but not with the other pair. Once again, values for Q)
other than R/2 were explored; in each case a 2-2 split was discovered. The next section
proposes a means to avoid this pathological case, while preserving the existing means for

achieving initial synchronization and transient recovery.

End of Interval—Time Out

Inspection of Figure 6.4 suggests that if any of the clocks were to arbitrarily decide to not
compute any adjustment, the immediately following interval would have a collection of
three clocks within freaq of each other. This is shown in Figure 6.5. When clock b decides
not to compute any adjustment, it shifts to a point where its pulse is within B..aq of ¢ and

d. Here the algorithm takes over, and the three values converge.* Clock a is also brought

4Figure 6.5 illustrates the fault-free case. If a were faulty, it could delay convergence by at most
log, (Bread)-
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Figure 6.5: End of Interval Initialization—Time Out

into the fold because of the transient recovery process. This process will be explained in
more detail in Section 6.2. All that remains is to provide a means for the clocks not to
apply any adjustment when such action is necessary.

Suppose each clock maintains a count of the number of elapsed intervals since it has
observed N — F pulses. When this count reaches 8, for example, it is reasonably safe
to assume that either fewer than N — F clocks are active, or the system is caught in
the pathological scenario illustrated in Figure 6.4. In either case, choosing to apply no
correction for one interval does no harm. Once this time out expires, it is important to
reset the counter and switch back immediately to the end of interval mode. This prevents
the system from falling into the pathological situation presented in Figure 6.2.

Now that we have a consistent mechanism for automatically initializing a collection
of good clocks, we need to explore how a faulty clock could affect this procedure. First
we note that Figure 6.4 shows the only possible pathological scenario. Consider that an
ensemble of unsynchronized clocks must have at least one pair separated by more than
Dread, €lse the properties of precision enhancement force the system to synchronize. In a
collection of three clocks, at least one pair must be within fpeaq; Figure 6.3 shows that
in the absence of other readings, a pair within Be,q Will synchronize to each other. The

only way a fourth clock can be added to prevent system convergence is the pathological
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case in Figure 6.4. If this fourth clock is fault-free, the time out mechanism will ensure
convergence. Two questions remain; whether a faulty clock can prevent the time out from
expiring, and if a faulty clock can prevent synchronization if a time out occurs. We address
the former first.

Recall from the description of the design that, in any synchronization interval, each
clock recognizes at most one signal from any other clock in the system. The only means
to prevent a time out is for each nonfaulty clock to observe three pulses in an interval, at
least once every eight intervals. In Figure 6.6, d is faulty in such a manner that it will

be observed by a, b, and ¢ without altering their computed corrections. Clock ¢ is not
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Figure 6.6: End of Interval Initialization: d Faulty—benign

visible to either a or b, and neither of these is visible to ¢. Neither a nor b will reach
a time out, because they see three signals in every interval. However, except for very
rare circumstances, ¢ will eventually execute a time out, and the procedure illustrated in
Figure 6.5 will cause a, b, and ¢ to synchronize.

There is one unlikely scenario when @ = R/2 in which the good clocks fail to converge.
It requires ¢ to observe either a or b at the end of its interval, with neither a nor b observing
c. This is only possible if ¢ and a (b) are separated by precisely R/2 ticks. Even then,
it is more likely that a (b) will see ¢ than the other way around. This tendency can be
exaggerated by setting @ to be slightly more than R/2, ensuring that a (b) will see ¢

first. If a (b) observes ¢, the effect will be the same as if it had timed out. Since a (b) is
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synchronized with b (a), observing ¢ at the beginning of the interval will cause the proper
correction to be 0, and the system will synchronize.

The only remaining question is whether a faulty clock can prevent the others from
converging if a time out occurs. Unfortunately, a fault can exhibit sufficiently malicious
behavior to prevent initialization. We begin by looking back at Figure 6.5. If a is faulty,
and a time out occurs on b, then b, ¢, and d will synchronize. If, on the other hand, d
is faulty, we do not get a collection of good clocks within Breaq. A possible scenario is

shown in Figure 6.7. Here, d prevents a from synchronizing and also causes a@’s time out
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Figure 6.7: End of Interval Initialization: d Faulty—malicious

to reset. At some point, d will also need to send a pulse at the end of an interval to either
b or c, ensuring that just one of them will time out. The process can then be repeated,
preventing the collection of good clocks from ever becoming synchronized.

The attempt for a robust initialization scheme has fallen short. A sound mechanism
exists for initializing the clocks in the absence of any failures. Also, if a clock fails passive,
the remaining clocks will be able to synchronize. . Unfortunately, the technique is not

robust enough to ensure initialization in the presence of malicious failures.

6.1.2 Comparison to Other Approaches

The argument that the clocks converge within log,(fBread) intervals is adapted from that

given by Welch and Lynch [11]. However, the approach given here for achieving initial
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synchronization differs from most methods in that it first synchronizes the interval clocks,
and then it decides upon an index for the current interval. Techniques in [11], [12], and
[13] all depend upon the good clocks knowing that they wish to initialize. Agreement
is reached among the clocks wishing to join, and then the initialization protocol begins.
It seems that the agreement first approach is necessary to ensure initialization in the
presence of malicious faults. The approach taken here seems similar to that mentioned in

[14], however, details of their approach are not given.

6.2 Transient Recovery
The argument for transient recovery capabilities hinges upon the following observation:

As long is there is power to the circuit and no faults are present, the circuit

will execute the algorithm.

Using the fact that the algorithm executes continually, and that pulses can be observed
during the entire synchronization interval, we can establish that up to F' transiently af-

fected channels will automatically reintegrate themselves into the set of good channels.

6.2.1 Theory Considerations

A number of axioms were added to the EHDM theory to provide sufficient conditions to
establish transient recovery. Current theory provides an uninstantiated predicate rpred
that must imply certain properties. To formally establish transient recovery it is sufficient
to identify an appropriate rpred for the given design, and then show that a clock will
eventually satisfy rpred if affected by a transient fault (provided that enough clocks were
unaffected). The task is considerably simplified if the convergence function satisfies the
recovery variants of precision enhancement and accuracy preservation. In Chapter 4, it
was shown that the fault-tolerant midpoint function satisfies those conditions. The current

requirements for rpred are the following;:
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1. From module delay3—
recovery_lemma: Axiom
delay_pred(i) A ADJ_pred(i + 1)
A rpred(i)(p) A correct_during(p, ti+, t5+2) A wpred(i + 1)(g)
D |t — st <

2. From module new_basics—
delay_recovery: Axiom . A
rpred(i)(p) A wvr_pred(i)(q) D |5t — ti+!| < 8

3. From module rmax_rmin— ‘
ADJ_recovery: Axiom optionl A rpred(i)(p) D |ADJ,;| < a(|8'+ 2+ A'])

4. From module delay—
wpred_preceding: Axiom wpred(i + 1)(p) D wpred(:)(p) V rpred(:)(p)

wpred_rpred_disjoint: Axiom —(wpred(¢)(p) A rpred(z)(p))

wpred_bridge: Axiom
wvr_pred(i)(p) A correct_during(p, t5+1,152) O wpred(i + 1)(p)
The conditions from module delay define wpred; they ensure that a clock is considered
working only if it was working or recovered in the previous interval. They were previously
discussed in Section 3.3. Arguments for transient recovery hinge on the first three con-
straints presented above. In Chapter 3, two options were presented for determining when

to apply the adjustment. These options are:
1. Ti' = (i +1)R+T°, or

2. Ti+! = (i + 1)R+ T° — ADJ},.

Since the design presented in Chapter 5 uses the second option, the arguments for transient
recovery will be specific to that case. The argument for this option depends primarily on
satisfying axiom recovery_temma.

Axiom recovery_lemma is used in the inductive step of the machine checked proof of

Theorem 3.1. To prove recovery_lemma, it is sufficient for rpred()(p) to equal the following;:
e correct_during(p, s;, t;,“),
o wpred(:)(q) D s} — si| < Breaa, and

e —wpred(7)(p)-
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Using arguments similar to the proof of Theorem 3.1, we can then establish that:

° |ADJ;;| < a(fread + 2A’) and

o [icit1(T) — icit}(T)| < 2p(|IT — 57| + @(Bread + 2A7)) + w(2A" + 2, 8" + 2A").

The second of the above is made possible by using the recovery version of precision en-
hancement. Since 8’ > 4p7 . + w(2A" + 2, 5’ + 2A"), all that remains is to establish that
2p(|S Hl_g i|+a(,6,ead+2A' ) < 4p7T ez Since PBread < R/2 and a is the identity function,
this is easily established. Axiom delay_recovery is easily established for implementations us-
ing the second algorithm schema presented in Chapter 3. Since T;;“ +ADJ;; = (i+1)R+T°
and 5! = icit1((¢ 4+ 1)R 4 T°), all that is required is to substitute (¢ +1)R+T° for T in
item 2 above. Since the two options are mutually exclusive, and the design employs the

second, axiom ADJ_recovery is trivially satisfied.

6.2.2 Satisfying rpred

The only modification to the design required is that the synchronization signals include
the sender’s value for i (the index for the current synchronization interval). By virtue
of the maintenance algorithm the N — F good clocks are synchronized within a bounded
skew § € R. A simple majority vote restores the index of the recovering clock. If the
recovering clock’s pulse is within Breaq of the collection of good clocks, rpred is satisfied.
If not, we need to ensure that a recovering clock will always shift to a point where it is
within SBreag of the collection of good clocks.

The argument for satisfying rpred will be given for a four clock system; the argument
for the general case requires an additional timeout mechanism to avoid pathological cases.
Consider the first full synchronization interval that the recovering clock is not faulty. In a
window of duration R, it will obtain readings of the good clocks in the system. If the three
readings are within § of each other, the recovering clock will use two of the three readings
to compute the convergence function, restore the index via a majority vote, and will be

completely recovered for the next interval. It is possible, however, that the pulses from
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the good clocks align closely with the edge of the synchronization interval. The recovering
clock may see one or two clocks in the beginning of the interval, and read the rest at the
end. It is important to be using the end of interval method for resolving the absence of
pulses. By using the end of interval method, it is guaranteed that some adjustment will be
computed in every interval. If two pulses are observed near the beginning of the interval,
the current interval will be shortened by no more than R — . If only one clock is observed
in the beginning of the interval, then either two clocks will be observed at the end of the
interval or the circuit will pretend they were observed. In either case, the interval will be
lengthened by (R — @)/2. It is guaranteed that in the next interval the recovering clock
will be separated from the good clocks by =~ (R — @)/2. Since (R — Q)/2 < Pread, the
requirements of rpred have been satisfied. It is important to recognize that this argument
does not depend on the particular value chosen for Q. This gives greater flexibility for

manipulating the design to meet other desired properties.

6.2.3 Comparison with Other Approaches

A number of other fault-tolerant clock synchronization protocols allow for restoration of a
lost clock. The approach taken here is very similar to that proposed by Welch and Lynch
[11]. They propose that when a process awakens, that it observe incoming messages until
it can determine which round is underway, and then wait sufficiently long to ensure that
it has seen all valid messages in that round. It can then compute the necessary correction
to become synchronized. Srikanth and Toueg [12] use a similar approach, modified to
the context of their algorithm. Halpern et al. [13] suggest a rather complicated protocol
which requires explicit cooperation of other clocks in the system. It is more appropriate
when the number of clocks in the system varies greatly over time. All of these approaches
have the common theme, namely, that the joining processor knows that it wants to join.
This implies the presence of some diagnostic logic or timeout mechanism which triggers

the recovery process. The approach suggested here happens automatically. By virtue of
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the algorithm’s execution in dedicated hardware, there is no need to awaken a process to
participate in the protocol. The main idea is for the recovering process to converge to a
state where it will observe all other clocks in the same interval, and then to restore the

correct interval counter.



Chapter 7

Concluding Remarks

Clock synchronization provides the cornerstone of any fault-tolerant computer architec-
ture. To avoid a single point failure it is imperative that each processor maintain a local
clock which is periodically resynchronized with other clocks in a fault-tolerant manner.
Due to subtleties involved in reasoning about interactions involving misbehaving compo-
nents, it is necessary to prove that the clock synchronization function operates correctly.
Shankar [7] provides a mechanical proof (using EEDM [8]) that Schneider’s generalized
protocol [6] achieves Byzantine fault-tolerant clock synchronization, provided that eleven
constraints are satisfied. This thesis has revised the proof to simplify the verification
conditions and illustrated the revised theory with a concrete example.

Both Schneider and Shankar assumed the property of bounded delay.! This thesis
presents a general proof of this property from slightly revised versions of the remaining
conditions. The revised conditions have also been shown to imply the original conditions.
This revised set of conditions greatly simplifies the use of Schneider’s theory in the ver-
ification of clock synchronization systems. In addition, a set of conditions sufficient for
proving recovery from transient faults has been added to the theory. A synchronization

system based on the fault-tolerant midpoint convergence function was shown to satisfy

1This terminology is from Shankar’s report, Schneider called this property a reliable time source.
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the constraints of the revised theory.

The fault-tolerant midpoint convergence function has been proven (in EEDM) to satisfy
the properties of translation invariance,‘ precision enhancement, and accuracy preservation.
These proofs are reusable in the verification of any synchronization algorithm which uses
the same function. The assumed bound on the number of faults was established in the
proof of precision enhancement. This proof assumes that the number of faults allowed is
fewer than one-third of the number of clocks.

An informal design of a circuit to implement the clock synchronization function has
been presented. This design was derived from the algebraic constraints presented in Sec-
tion 2.1. Assuming the properties of bounded drift (new condition 2) and reading error
(new condition 7), it was shown that this design satisfied the remaining constraints of
the theory. Bounded drift is a physical property that cannot be established formally; in
essence, it defines the behavior of a nonfaulty clock. Establishing reading error requires an
analysis of the low-level asynchronous communication mechanism employed by the system;
such an analysis is beyond the scope of this thesis.

It was hoped that the circuit could be shown to automatically initialize itself, even in
the presence of faults. Two approaches for a four clock system were explored and shown
to possess pathological scenarios which prevent reliable initialization. An informal sketch
of a third approach was given that combines techniques from the two failed attempts.
This technique ensures automatic initialization in the absence of failures, or if the failures
are benign. However, malicious behavior from a failed clock can prevent good clocks from
synchronizing. It appears that the standard approach of first reaching agreement, and
then synchronizing, will be necessary to initialize in the presence of arbitrary failures.

In keeping with the spirit of the Reliable Computing Platform, it is desirable that
the clock synchronization subsystem provide for recovery from transient faults. Sufficient
conditions for transient recovery were embedded in the EHDM proofs. These conditions

were based on the approach used by DiVito, Butler, and Caldwell for the RCP [1]. It was
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shown that a four clock instance of the given design will eventually satisfy the transient
recovery assumptions. Extensions to accommodate the more general case require a time-
out mechaﬁism, but otherwise the argument is similar.

In summary, a mechanically checked version of Schneider’s paradigm for fault-tolerant
clock synchronization was extended. Use of the extended theory was illustrated in the
verification of an abstract design of a fault-tolerant clock synchronization system. Some
of the requirements were established via a mechanically checked formal proof using ExpM,
while other constraints were demonstrated informally. Ultimately, a mechanically checked
argument should be developed for all of the constraints. This will help to clarify the
underlying assumptions, and in many cases can correct errors in the informal proofs.
Mechanical proof is still a difficult task because it is not always clear how to best present
arguments to the mechanical proof system. For example, the arguments given for initial
synchronization will need to be revised considerably before a mechanically checked proof
will be possible. Nevertheless, even though some conditions were not proven mechanically,
development of the design from the mechanically checked specification has yielded better

understanding of the system than would have been possible otherwise.



Appendix A

Proof of Agreement

There are two parts to this appendix. First, there is an informal proof sketch that agree-
ment can be established using the revised constraints on § and some of the intermediate
results of Chapter 3. The second part consists of information extracted from EHDM that
confirms that the mechanical proofs of agreement have been performed for the minor revi-
sions to Shankar’s theory. There are also revised versions of modules clockassumptions and

lemma_final; lemma_final contains the EEDM statement of Theorem 2.1, Lemma agreement.

A.1 Proof Sketch of Agreement

This section sketches the highlights of an informal proof that the following constraints
are sufficient to establish Theorem 2.1; these arguments have not yet been submitted to

EHDM.
1. 4prmaez+ w([2A7+ 2], [B' +2A7]) < f
2. [(1+p)8' + 20T mas] <6
3. a(|B'+ 2N )+ A+ [2p8] +1 L 6.

The first of these constraints is established in Chapter 3 and is used to ensure that

|, — 4| < B’. We can use an intermediate result of that proof (Lemma 3.1.2 on page 25) to
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establish the second of the above constraints. The third of these is obtained by substituting
the revised bounds on the array of clock readings (established in the proof of part (a) of
Theorem 3.1 on page 21) into Shankar’s proof!.

We wish to prove the following theorem (from Chapter 2):

Theorem 2.1 (bounded skew) For any two clocks p and q that are nonfaulty'at time
t,

IVCp(t) - ch(t)l <é
To do this, we first need the following two lemmas.

Lemma 2.1.1 For nonfaulty clocks p and q, and max(t},t:) <t < min(t;“,té“),

IIC;;(t) - Icé(t)l < [(1 4 p)B + 207 masl

Proof: We begin by noticing that IC;;(t) = IC;;(ici,(IC;;(t))) (and similarly for IC,).
Assume without loss of generality that ici(IC%(t)) < ici(ICi(t)) < t, and let T = ICy(2).

Clearly, T < ma,x(T;"'l,T;"'l). We now have

[ICi(t) — ICit)| = [ICi(ici(T)) — ICi(ici(T))]
[IC;(ici(T)) — IC(ick(T))|

[+ p)(lici(T) = ici(T)))]

IN

The final step in the above derivation is established by Corollary 2.2 on page 12.
All that remains is to establish that Iicz(T)—ic;(T)l < B'+2p7mez/(1+p). On page 13,
we defined 7,4, to be (1+ p)(R+ a8+ 2A")). The proof is by induction on ¢. For i = 0,

licd(T) —ici(T)| < |82 — 9] + 2p(max(Tp+!, Ti+!) — T°)

1This has not been done in the mechanical proof because Shankar’s proof has not yet been revised to
accommodate transient recovery
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< B+ 2p(R+ o +24))
For the inductive step we use Lemma 3.1.2 to establish that
|iciH(T) — ics ' (T)| < 2p(IT — S°| + (B + 2A")) + w(20" + 2, 8"+ 2A")

There are two cases to consider: if T < §*t1, this is clearly less than A'; if T >
§i+1, this is bounded by B’ + 2p(max(Ti+!, Ti*!) — §1). It is simple to establish that

max(TH, Ti+t) — 1) < (R + a(B’ + 20)). =

Lemma 2.1.2 For nonfaulty clocks p and q and ti*! <t < 5t
[ICH(t) — IC;F ()] < e(|8' + 20')) + A+ [2p6] +1

Proof Sketch: The proof follows closely the argument given in the proof of case 2 of
Theorem 2.3.2 in [7]. The proof is in two parts. First, the difference at tf.;“ is bounded
using accuracy preservation, and then the remainder of the interval is bounded. The dif-

ference in this presentation is that here the argument to o is smaller. =

We can now prove Theorem 2.1.
Proof Sketch: The proof consists of recognizing that VC,(t) = I C;;(t) for t; <t< t;,'“.

This, coupled with nonoverlap and the above two lemmas assures the result. ]
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A.2 EvpMm Extracts

A.2.1 Proof Chain Analysis

The following is an extract of the EHDM proof chain analysis for Lemma agreement in

module lemma-_final.

==== === SUMMARY ==== =

The proof chain is complete

The axioms and assumptions at the base are:
clockassumptions.IClock_defn
clockassumptions.Readerror
clockassumptions.VClock_defn
clockassumptions.accuracy_preservation_recovery_ax
clockassumptions.beta_0
clockassumptions.correct_closed
clockassumptions.correct_count
clockassumptions.init
clockassumptions.mu_0
clockassumptions.precision_enhancement_recovery_ax
clockassumptions.rate_1
clockassumptions.rate_2
clockassumptions.rho_0
clockassumptions.rho_1
clockassumptions.rmax_0O
clockassumptions.rmin_0O
clockassumptions.rtsO
clockassumptions.rtsi
clockassumptions.rts2
clockassumptions.rts_2
clockassumptions.synctime_0O
clockassumptions.translation_invariance
division.mult_div_1
division.mult_div_2
division.mult_div_3
floor_ceil.ceil_defn
floor_ceil.floor_defn
multiplication.mult_10
multiplication.mult_non_neg



noetherian[EXPR, EXPR].general_induction
Total: 30

The definitions and type-constraints are:
absmod. abs
basics.maxsync
basics.maxsynctime
basics.minsync
clockassumptions.Adj
clockassumptions.okay_Reading
clockassumptions.okay_Readpred
clockassumptions.okay_Readvars
clockassumptions.okay_pairs
lemma3.okayClocks
multiplication.mult
readbounds .okaymaxsync

Total: 12



A.2.2 Module lemma final

lemma_final: Module

Using clockassumptions, lemma3, arith, basics
Exporting all with clockassumptions, lemma3
Theory

b,4q,P1,P2,q,492,P3, Q3,i)jak: Var nat

{,m,n: Var int

z,Yy, 2. Var number

posnumber: Type from number with (Az :z > 0)
r,s,t: Var posnumber

correct_synctime: Lemma correct(p,t) At < tf, + rpin Dt < t;“

synctime_multiples: Lemma correct(p, 1) At > 0At < T % Trpin D tf, >

synctime_multiples_bnd: Lemma correct(p,t) At > 0Dt < t,l;t/r'"‘"]+1

agreement: Lemma g < 7y,
Ap<bsAm([2¥A+2+FBxp]+1,
6s + [2* ((Tmaz + B)xp+ A)] + 1)
<és
Abs + |-2*”'max*P-l +1<4
ANa(bs+ 2% (Tmaz+ B)*p+2*xAl+ 1)+ A+ [2%8%xp|+1
<é
At > 0 A correct(p,t) A correct(q,t)
S VCy(t) - VCo()] < 8

Proof

agreement_proof: Prove agreement from
lemma33 {i «— [t/rmin] + 1},
okayClocks_defn_Ir {i — [t/rmin] + 1, t — tQCS},
maxsync_correct {s «— t, ¢ «— [t/Tmin| + 1},
synctime_multiples_bnd {p — (p 1+ Q)[[t/rmin| + 1]},
rmin_0,
div_nonnegative {z — t, ¥ — Tmin},

ceil_defn {z «— (t/Tmin)}
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synctime_multiples_bnd_proof: Prove synctime_multiples_bnd from
ceil_plus_mult div {z — t, y — rn},
synctime_multiples {¢ — [t/rpin] + 1},
rmin_0,
div_nonnegative {z «— t, ¥ <« Tmin},
ceil_defn {z — (t/rmin)}

correct_synctime_proof: Prove correct_synctime from rtsl {t «— tQCS}

synctime_multiples_pred: function[nat, nat, posnumber — bool] ==
(Xi,p,t:correct(p,t) At > OAT < &% Tiyin D ), > 1)

synctime_multiples_step: Lemma
correct(p,t) At > 1, At > 0D t, > ixTmin

synctime_multiples_proof: Prove synctime_multiples from
synctime_multiples_step

synctime_multiples_step_pred: function[nat, nat, posnumber — bool] ==
(Ai,p,t:correct(p,t) At St AL 20Dt > ixTmin)

synctime_multiples_step_proof: Prove synctime_multiples_step from
induction {prop « (A ¢ : synctime_multiples_step_pred(%, p,t))},
mult_0 {z «— 7pin},
synctime_0,
rts_.1 {i — jQP1},
rmin_0,
correct_closed {s «— ¢, t — tg;@PH‘l},
distrib {z « jQP1, y — 1, z « rrin},
mult_lident {z — 7nin}

End lemma_final



A.2.3 Module clockassumptions

clockassumptions: Module
Using arith, countmod
Exporting all with countmod, arith
Theory
N: nat
N_0: Axiom N >0

process: Type is nat

event: Type is nat

time: Type is number

Clocktime: Type is integer

la m,n,p,q,P1, P2, 91, 92, P3, 43: Var process

i, 7, k: Var event

z,¥y,2,T7,8,t: Var time

X,Y,Z,R,S,T: Var Clocktime

~,8: Var function[process — Clocktime]}

6, Ps Tmins Tmazs ﬂ: number

A, p: Clocktime

PC,1(*2), VCy1(%2): function[process, time — Clocktime]

t*2: function[process, event — time]

©*2: function[process, event — function[process — Clocktime]]
IC*%(3): function[process, event, time — Clocktime]

correct: function[process, time — bool]

¢fn: function|[process, function[process — Clocktime] — Clocktime]
7: function[Clocktime, Clocktime — Clocktime]

a: function[Clocktime — Clocktime]

delta_0: Axiom § > 0
mu_0: Axiom g >0
rho_0: Axiom p >0
rho_1: Axiom p< 1
rmin_0: Axiom 7,,;, > 0
rmax_0: Axiom 7,4, > 0
beta_0: Axiom 8> 0

lamb_0: Axiom A >0
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init: Axiom correct(p,0) D PC,(0) > 0A PCp,(0) < p

correct_closed: Axiom s >t A correct(p, s) D correct(p, t)

rate_1: Axiom correct(p,s) A s >t D PCp(s) — PCp(t) < [(s —t) x (1 + p)]
rate_2: Axiom correct(p,s) A s>t D PCp(s) — PCpu(t) > [(s —t) % (1 — p)]
rts0: Axiom correct(p,t) At < t;"‘l Ot— tﬁ, < Pmaz

rtsl: Axiom correct(p,t) At > tﬁ,"‘l Dt— t;; > Tmin

rts 0: Lemma correct(p, t51) D t;',"'l - t;; < Pmaz

rts_1: Lemma correct(p, t;+1) ) t:,‘*‘l — tﬁ, > Ponin

rts2: Axiom correct(p,t) At > tfl + B A correct(g,t) Dt > t;,

rts.2: Axiom correct(p, t;) A correct(q,tf;) D tf, - tfi <p

synctime_0: Axiom tg =0

VClock_defn: Axiom‘ . .
correct(p,t) At >ty At < 5t D VCp(t) = IC,(t)

adi*?: function[process, event — Clocktime] =
(Ap,i:(if i > 0 then cfn(p,0}) — PC'p(ti,) else 0 end if))

IClock_defn: Axiom correct(p,t) D IC;(t) = PCp(t) + adj;

Readerror: Axiom correct(p, t51) A correct(g, t5t1)
D |05 (g) — ICL ()| < A

translation_invariance: Axiom
cfn(p, (A p1 — Clocktime : y(p1) + X)) = ¢fn(p,7) + X

ppred: Var function[process — bool]
F': process
okay_Readpred: function[function[process — Clocktime], number,
function[process — bool] — bool] =
(Av,y,ppred: (VI,m: ppred(l) A ppred(m) D |y(1) — v(m)| < y))
okay_pairs: function[function[process — Clocktime],
function[process — Clocktime], number,
function[process — bool] — bool] =

(A7,0,z,ppred : (V p3 : ppred(p3) D |y(p3) — 0(p3)| < z))

okay_Readpred_floor: Lemma
okay_Readpred(y, y, ppred) D okay_Readpred(~, |y], ppred)

okay_pairs_floor: Lemma
okay_pairs(vy, 8, z, ppred) D okay_pairs(v, 0, |z], ppred)



N_maxfaults: Axiom FF < N

precision_enhancement_ax: Axiom
count(ppred, N) > N — F
A okay_Readpred(y, Y, ppred)
A okay_Readpred(8,Y, ppred)
A okay_pairs(y,8, X, ppred) A ppred(p) A ppred(q)
D |efr(p,v) — efn(q,0)| < m(X,Y)

precision_enhancement_recovery_ax: Axiom
count(ppred, N) > N — F
A okay_Readpred(7,Y, ppred)
A okay_Readpred(8,Y, ppred) A okay_pairs(v, 8, X, ppred)
> lefalp, 7) — cfn(g, )| < w(X,Y)

correct_count: Axiom count(( Ap: correct(p,t)),N)> N — F

okay_Reading: function[function[process — Clocktime], number, time
— bool] =
(’\’Y’y)t : (Vpla‘h :
correct(p1,t) A correct(g1,t) D [v(p1) — v(a)| < ¥))
okay_Readvars: function[function[process — Clocktime],
function[process — Clocktime], number, time
— bool] =

(A7,0,z,t:(V ps:correct(ps,t) D |v(ps) — 8(ps3)| < z))

okay_Readpred_Reading: Lemma
okay_Reading(7, y,t) D okay_Readpred(y,y, (A p : correct(p,1)))

okay_pairs_Readvars: Lemma
okay_Readvars(v, 0, z,t) D okay_pairs(y,8,z,( Ap : correct(p, t)))

precision_enhancement: Lemma
okay_Reading(y,Y, t5+?
A okay_Reading(8, Y, ti+1 ‘
A okay_Readvars(y, 8, X, ;!
A correct(p, t5F1) A correct(q, t5H!

D |efr(p,v) — c¢fn(q,8)| < m(X,Y)

okay_Reading_defn_Ir: Lemma
okay_Reading(v, y,1)
D (VY p1,q : correct(py,t) A correct(q,t) D |v(p1) — v(q1)] < y)

okay_Reading_defn_rl: Lemma
(V p1,q1 : correct(py, 1) A correct(qr, ) O |7(p1) — v(q1)l < v)
D okay_Reading(7v, y,1)

okay_Readvars_defn_lr: Lemma
okay_Readvars(y,8,z,t) D (V ps3 : correct(ps, t) D |y(p3) — 8(p3)| < z)

75



76

okay-Readvars_defn_rI: Lemma
(V ps : correct(ps,t) D |y(ps) — 8(p3)| < x) D okay_Readvars(y, 0, z,1)

accuracy_preservation_ax: Axiom
okay_Readpred(y, X, ppred) A count(ppred, N) > N — F A ppred(p) A ppred(q)
D |efa(p,v) — (9] < a(X) |

accuracy_preservation_recovery_ax: Axiom
okay_Readpred(y, X, ppred) A count(ppred, N} > N — F A ppred(q)

D lefa(p,7) — 7(9)| £ a(X)
Proof

okay_Readpred_floor_pr: Prove okay_Readpred_floor from
okay_Readpred {I «— [Q@p2, m — m@p2},
okay_Readpred {y < [y]},
iabs_is_abs {X « v(I@p2) — v(m@p2), z — y(IQ@p2) — v(m@p2)},
floor_mon {z « iabs(X @p3)},
floor_int {¢ — iabs(X@p3)}

okay_pairs_floor_pr: Prove okay_pairs_floor from
okay_pairs {p3 < p3@p2},
okay_pairs {z — |z]|},
iabs_is_abs {z «— v(p3@p2) — (p3@p2), X «— v(p3@p2) — 6(ps@p2)},
floor_mon {z « iabs(X@p3), y « z},
floor_int {¢ — iabs(X@p3)}

precision_enhancement_ax_pr: Prove precision_enhancement_ax from
precision_enhancement_recovery_ax

accuracy_preservation_ax_pr: Prove accuracy_preservation_ax from
accuracy_preservation_recovery_ax

okay_Reading_defn_rl_pr: Prove
okay_Reading_defn_rl {p; — p1@P1S, ¢; — ¢1@P1S} from okay_Reading

okay_Reading_defn_Ir_pr: Prove okay_Reading_defn_Ir from
okay_Reading {p; — p1@CS, ¢; « ¢:0CS}

okay_Readvars_defn_rl_pr: Prove okay_Readvars_defn_rl {p3 — p3@P1S} from
okay_Readvars

okay_Readvars_defn_Ir_pr: Prove okay_Readvars_defn_Ir from
okay_Readvars {p3 — p3@CS}
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precision_enhancement_pr: Prove precision_enhancement from
precision_enhancement_ax {ppred — (A g : correct(q, ARSI
okay_Readpred_Reading {t — t;t!, y — Y7},
okay_Readpred_Reading {t «— t;t!, y — Y, v « 6},
okay_pairs_Readvars {t — t;+1, z — X},
correct_count {t « 51}

okay_Readpred_Reading_pr: Prove okay_Readpred_Reading from
okay_Readpred {ppred — (A p : correct(p,t))},
okay_Reading {p; < lQP1S, ¢y — mQ@P1S}

okay_pairs_Readvars_pr: Prove okay_pairs_Readvars from
okay_pairs {ppred «— (A p: correct(p,t))}, okay_Readvars {p3 «— p3@P1S}

rts_0_proof: Prove rts_0 from rtsQ {t — t;+1}
rts.1_proof: Prove rts_1 from rtsl {t — t;‘*‘l}

End clockassumptions



Appendix B

Bounded Delay Modules

This appendix contains the EHDM proof modules for the extended clock synchronization
theory. The proof chain analysis is taken from modules delay4, rmax_rmin, and new_basics.
Module delay4 contains the proofs of bounded delay, while rmax_rmin and new_basics show
that the new conditions are sufficient for establishing some of the old constraints from
Shankar’s theory. Several lines of the proof analysis have been deleted. The pertinent

information concerning the axioms at the base of the proof chain remains.

B.1 Proof Analysis

B.1.1 Proof Chain for delay4

Terse proof chains for module delay4

SUMMARY
The proof chain is complete

The axioms and assumptions at the base are:
clockassumptions.IClock_defn
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clockassumptions.N_maxfaults

clockassumptions.accuracy_preservation_recovery_ax

clockassumptions.precision_enhancement_recovery_ax

clockassumptions.rho_0O

clockassumptions.translation_invariance

delay.FIX_SYNC

delay.RATE_1

delay.RATE_2

delay.R_FIX_SYNC_O

delay.betaread_ax

delay.bnd_delay.init

delay.fix_between_sync

delay.good_read_pred_axl

delay.read_self

delay.reading_error3

delay.rts_new_1

delay.rts_new_2

delay.synctimeO_defn

delay.synctime_defn

delay.wpred_ax

delay.wpred_correct

delay.wpred_preceding

delay3.betaprime_ax

delay3.recovery_lemma

delay4.optionl_defn

delay4.option2_defn

delay4.options_exhausted

division.mult_div_1

division.mult_div_2

division.mult_div_3

floor_ceil.ceil_defn

floor_ceil.floor_defn

multiplication.mult_non_neg

multiplication.mult_pos

noetherian[EXPR, EXPR].general_induction
Total: 36



B.1.2 Proof Chain for rmax_rmin

Terse proof chains for module rmax_rmin

SUMMARY
The proof chain is complete

The axioms and assumptions at the base are:
clockassumptions.IClock_defn
clockassumptions.accuracy_preservation_recovery_ax
clockassumptions.precision_enhancement_recovery_ax
clockassumptions.rho_O
clockassumptions.translation_invariance
delay.FIX_SYNC
delay.RATE_1
delay.RATE_2
delay.R_FIX_SYNC_O
delay.betaread_ax
delay.bnd_delay_init
delay.fix_between_sync
delay.good_read_pred_axi
delay.read_self
delay.reading_error3
delay.rts_new_1
delay.rts_new_2
delay.synctimeO_defn
delay.synctime_defn
delay.wpred_ax
delay.wpred_correct
delay.wpred_preceding
delay3.betaprime_ax
delay3.recovery_lemma
delay4.optioni_defn
delay4.option2_defn
delay4.options_exhausted
division.mult_div_1
division.mult_div_2
division.mult_div_3
floor_ceil.ceil_defn
floor_ceil.floor_defn
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multiplication.mult_non_neg
multiplication.mult_pos
noetherian[EXPR, EXPR].general_induction
rmax_rmin.ADJ_recovery

Total: 36

B.1.3 Proof Chain for new_basics

Terse proof chains for module new_basics

SUMMARY
The proof chain is complete

The axioms and assumptions at the base are:
clockassumptions.IClock_defn
clockassumptions.N_maxfaults
clockassumptions.accuracy_preservation_recovery_ax
clockassumptions.precision_enhancement_recovery_ax
clockassumptions.rho_O
clockassumptions.translation_invariance
delay.FIX_SYNC
delay.RATE_1
delay.RATE_2
delay.R_FIX_SYNC_O
delay.betaread_ax
delay.bnd_delay_init
delay.fix_between_sync
delay.good_read_pred_ax1l
delay.read_self
delay.reading_error3
delay.rts_new_1
delay.rts_new_2
delay.synctimeO_defn
delay.synctime_defn
delay.wpred_ax
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delay.wpred_correct
delay.wpred_preceding
delay3.betaprime_ax
delay3.recovery_lemma
delay4.optioni_defn
delay4.option2_defn
delay4.options_exhausted
division.mult_div_1
division.mult_div_2
division.mult_div_3
floor_ceil.ceil_defn
floor_ceil.floor_defn
multiplication.mult_non_neg
multiplication.mult_pos
new_basics.delay_recovery
new_basics.nonoverlap
noetherian[EXPR, EXPR].general_induction
rmax_rmin.ADJ_recovery
Total: 39
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B.2 delay

delay: Module

Using arith, clockassumptions
Exporting all with clockassumptions
Theory

P, q,P1, %1t Var process

1,J,k: Var event

X, 8,T: Var Clocktime

s,t,ty,13: Var time

7: Var function[process — Clocktime]
B, Bread, A’: number

R: Clocktime

betaread_ax: Axiom [’ < Bread A Bread < R/2

ppred, ppred1l: Var function[process — bool]

S9: Clocktime

S*1: function[event — Clocktime] = (Ai:i* R+ 5°)

pc,1(*2): function[process, Clocktime — time]

ic}3(*3): function[process, event, Clocktime — time] =
(Ap,2,T : pe,(T — adjp))

s53: function[process, event — time] = (A p, i : ici(S*))

TO: Clocktime

T72: function[process, event — Clocktime]

synctime_defn: Axiom t;;"'l = ic;(T;'H)
synctime0_defn: Axiom ) = ic)(T°)
FIX.SYNC: Axiom S° > T°
R_FIX_SYNC_0: Axiom R > (5% - T9)
RO0: Lemma R >0

good_read_pred: function[event — function[process, process — bool]]

correct_during: function|[process, time, time — bool] =
(Ap,t,s:t<sA(Vit1:t <t Aty < s D correct(p,t1)))

wpred: function[event — function[process — bool]]

rpred: function[event — function[process — bool]]

wvr_pred: function[event — function[process — bool]] =
(Az:(Ap:wpred(i)(p) V rpred(i)(p)))

working: function[process, time — bool] =
(Ap,t:(3i:wpred(i)(p) Ath <t AL < titl))
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wvr_defn: Lemma wvr_pred(i) = (A p : wpred(3)(p) V rpred(%)(p))
wpred_wvr: Lemma wpred(i)(p) D wvr_pred(i)(p)

rpred_wvr: Lemma rpred(¢)(p) D wvr_pred(z)(p)

wpred_ax: Axiom count(wpred(i), N)> N — F

wvr_count: Lemma count(wvr_pred(¢), N) > N — F

wpred_correct: Axiom wpred(7)(p) D correct_during(p, t;;, t;'H)
wpred_preceding: Axiom wpred(z + 1)(p) D wpred(z)(p) V rpred(i)(p)
wpred_rpred_disjoint: Axiom —(wpred()(p) A rpred(i)(p))

wpred_bridge: Axiom
wvr_pred(i)(p) A correct_during(p, tit?, 15+2) O wpred(i + 1)(p)

wpred _fixtime: Lemma wpred(z)(p) D correct_during(p, st t5+1)
wpred_fixtime_low: Lemma wpred(¢)(p) D correct_during(p, t;, sﬁ,)

correct_during_trans: Lemma
correct_during(p, t,t3) A correct_during(p, t2, s)
D correct_during(p, t, s)

correct_during_sub_left: Lemma
correct_during(p,t,s) At < ty Aty < s D correct_during(p,t,t2)

correct_during_sub_right: Lemma
correct_during(p,t,s) At < 12 Aty < 8 D correct_during(p, t2, s)

wpred_lo_lem: Lemma wpred(i)(p) D correct(p, t.)
wpred_hi_lem: Lemma wpred(z)(p) D correct(p, t5+!
correct_during_hi: Lemma correct_during(p, t, s) D correct(p, s)
correct_during_lo: Lemma correct_during(p, t,s) D correct(p, t)
clock_ax1l: Axiom PCy(pc,(T))=T

clock_ax2: Axiom pc,(PCp(t)) <t At < pc,(PCy(t) + 1)
iclock_defn: Lemma ic;(T') = pc,(T — adj})

iclock0_defn: Lemma ic)(T') = pc,(T)

iclock_lem: Lemma correct(p, icj,(T)) D IC’;(fic;(T)) =T

ADJ:3: function[process, event — Clocktime] = (Ap,i: adji™ — adji)



IClock_ADJ_lem: Lemma correct(p,t) D IC5t}(t) = ICL(t) + ADJ}
iclock-ADJ_lem: Lemma ic;t!(T) = ic,(T — ADJ})

rts_new_1: Axiom correct(p,t5t1) D S + a8 + 2 A']) < Tit!
rts_new_2: Axiom correct(p, %) D Tp < §* — a(|8 + 2+ A])

FIXTIME_bound: Lemma
correct(p, t5+1) D S > §7 4 2x (|8 + 2% A'])

R-bound: Lemma correct(p,t5t1) D R > 2+ a(|8' + 2+ A'])

RATE_1: Axiom correct_during(p, pc,(T), pc,(S))AS > T
5 pey(S) — pey(T) < (S = TY+ (1 + )

RATE_2: Axiom correct_during(p, pc,(T),pc,(S))ANS > T
D pep(8) = pey(T) 2 (S - T)/(1 + p)

RATE.l.clock: Lemma
correct_during(p, ic,(T),ic,(S))ANS > T
D icy(§) —icy(T) < (S —T)x(1+p)

RATE-2.iclock: Lemma
correct_during(p, ic,(T),ic,(S))ANS > T
> ici(8) — ich(T) > (S — T)/(1+ p)

rate_simplify: Lemma S >T D> (S-T)/(1+4+p)>2(S-T)*(1—-p)
rate_simplify_step: Lemma S >T D (14 p)*x(S—-T)x(1—p)<S-T

RATE_2_simplify: Lemma
correct_during(p, pc,(T), pc,(S))AS > T
> pe,(5) - pe,(T) 2 (S~ T)x (1~ p)

RATE_2_simplify_iclock: Lemma
correct_during(p, i, (T),ic,(S))AS > T
D ich(S)—id(T) > (S—T)*(1-p)

RATE_lemmal: Lemma
correct_during(p, pc,(T'), pc,(5))
A correct_during(q, pc,(T), pc,(SNAS > T
D |pey(8) — peg(S)] < Ipep(T) — pey(T)| + 2% p* (5 — T)

RATE_lemmal.clock: Lemma
correct _during(p, ics(T), ic5(S5))
A correct_during(q, ic,(T),ic,(S))AS > T
D ich(S) ~ ici(S)] < |ick(T) = ici(T)| + 2% px (S — T)
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RATE_lemma2: Lemma
correct_during(p, pc,(T),pc,(S))AS > T
D [(pey(8) = 8) = (pep(T) - T) < px (IS - TY)

RATE_lemmaZ2.iclock: Lemma
correct_during(p, ic,(T),ic,(5))A S > T

D |(icp(5) = §) = (i (T) = T)| < p (IS - T1)

bnd_delay_init: Axiom

wpred(0)(p) A wpred(0)(q)
Dltg—tgl S B =24 px(SO~TO)AF — 2% (px(5°-T°) < B

bnd_delay_off_init: Lemma wpred(0)(p) A wpred(0)(q) D |s3 — 82| < g

good_read_pred_ax1l: Axiom

- e
correct_during(p, Sps t;,"’

A correct_during(g, sf,,té“) A ls;, — 83| < PBread
D good_read_pred(:)(p, q)

reading_error3: Axiom
good_read_pred(3)(p, q) o
D (051 (g) — ICH(8)) = (s, — sp)| < A

ADJ_leml: Lemma correct_during(p, s;, t;;"'l)
2 (ADJ; = cfalp, (Apr: O3 (p1) ~ IC,(541)))

ADJ_lem2: Lemma correct_during(p, s;',,ti,"'l)
D (ADJ} = cfn(p, O5t1) — ICL(5+1))

read_self: Axiom wpred(i)(p) D O (p) = ICL(£i+!)

fix_between_sync: Axiom
correct_during(p, 3, 15¥1) O 1} < sy A sy, < 1t

rts 2_lo: Lemma wpred(¢)(p) A wpred(i)(q) D |t§ — ti| < 8

rts 2 _hi: Axiom wpred(:)(p) A wpred(z)(q) D [t5H — i1 < 3

Proof

R_0_pr: Prove R_0 from R_FIX_.SYNC_0, FIX_.SYNC
FIXTIME_bound_pr: Prove FIXTIME_bound from rts_new_1, rts_new_2 {; «— 7 4 1}
R_bound_pr: Prove R_bound from FIXTIME_bound, §*!, §*! {i — i+ 1}

iclock_defn_pr: Prove iclock_defn from ic}2(x3)



wpred_fixtime_pr: Prove wpred_fixtime from
fix_between_sync,
wpred_correct,
correct_during_sub_right {s «— t;"’l, te—t, ta — s}

wpred_fixtime_low_pr: Prove wpred_fixtime_low from
fix_between_sync,
wpred_correct,
correct_during_sub_left {s «— t;,“, t—t, ty — s}

correct_during_sub_left_pr: Prove correct_during_sub_left from
correct_during {s < t3}, correct_during {t; — t,@pl}

correct_during_sub_right_pr: Prove correct_during_sub_right from
correct_during {t « t2}, correct_during {t; — t;@p1}

correct_during_trans_pr: Prove correct_during_trans from
correct_during,
correct_during {s «— ta, t; « t;@pl},
correct_during {t « ta, t1 «— t;@pl}

wpred_wvr_pr: Prove wpred_wvr from wvr_defn
rpred_wvr_pr: Prove rpred_wvr from wvr_defn

wvr_defn_hack: Lemma
(V p:wyr_pred(i)(p) = (( A p : wpred(i)(p) V rpred(i)(p))p))

wvr_defn_hack_pr: Prove wvr_defn_hack from wvr_pred {p — p@c}

wvr_defn_pr: Prove wvr_defn from
pred_extensionality
{predl — wvr_pred(%),
pred2 — (A p: wpred(i)(p) V rpred(i)(p))},
wvr_defn_hack {p — p@pl}

wvr_count_pr: Prove wvr_count from
wpred_ax,
count_imp
{ppredl — wpred(%),
ppred2 — (A p : wpred(z)(p) V rpred(i)(p)),
n «— N},
wvr_defn,
imp_pred_or {ppredl «— wpred(i), ppred2 « rpred()}

w,z,y, 2. var number

bd_hack: Lemma |w| <z —-yA|z|<|w|+yD|z| <=
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bd_hack_pr: Prove bd_hack

bnd_delay_off_init_pr: Prove bnd_delay_off_init from
bnd_delay_init,
RATE_lemmal.iclock {S « S°, T « T°, i < 0},
FIX.SYNC,
synctime0_defn,
synctimeO_defn {p — ¢},
SI% {i < 0},
sii{i=0 p—aq}
wpred_fixtime_low {¢ «— 0},
wpred_fixtime_low {p — ¢, ¢ — 0},
S*1 {i — 0}

mult_abs_hack: Lemma z x(1 —p) <yAy<zx(1+p)Dly—z|<pxz

mult_abs_hack_pr: Prove mult_abs_hack from
mult_ldistrib {y — 1, z « p},
mult_ldistrib_minus {y — 1, z « p},
mult_rident,
abs .3 bnd {z —y, y —z, 2z~ pxz},
mult_com {y < p}

RATE_l.iclock_pr: Prove RATE_1l.iclock from
RATE.1 {§ « § — adji, T « T — adjj},
iclock_defn,
iclock_defn {T' — S}

RATE_2_iclock_pr: Prove RATE_2_iclock from
RATE2 {S « § —adji, T — T — adj}},
iclock_defn,
iclock_defn {T « S}

RATE_2_simplify_iclock_pr: Prove RATE_2_simplify_iclock from
RATE_2_simplify {§ «— 5 — adj;, T —T— adjzf},
iclock_defn,
iclock_defn {T' — 5}

RATE_lemmal_sym: Lemma

correct_during(p, pc,(T), pc,(S))
A correct_during(gq, pe,(T), pc,(S)) A S > T A pey(S) > pey(S)
> [pe,(S) — pey(S)] < Ipey(T) = pey(T)| + 24 p%(S = T)

Rilhack: Lemma w <z Ay<zAy>zDl|y—z| < |z — w|

Rllhack_pr: Prove Rilhack from | x 1| {z «— y — z}, | x1| {z « 2z — w}
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RATE_lemmal_sym_pr: Prove RATE_lemmal_sym from
RATE._1,
RATE_2_simplify {p — ¢},
RIlhack
{z « pc,(S).
y — pey(5),
w — pc,(T)+ (§ - T)x(1 - p),
z—pe,(T)+(S-T)*(1+p)}
multdistrib {z — § - T, y « 1, z < p},
mult_ldistrib_minus {z «— S —T, y« 1, z «< p}, .
abs_plus {z — pc,(T) —pc,(T), y —2*px(§-T)},
mult_com {z « p, y — § - T},
abs_ge0 {z — 2*px (S5 —-T)},
mult_non_neg {z « p, y < S — T},
rho_0

RATE_lemmal_pr: Prove RATE_lemmal from
RATE_lemmal_sym,
RATE_lemmalsym {p < ¢, ¢ < p},
abs_com {z « pc,(5), y — pc,(5)},
abs_com {z — pc,(T), y < pc,(T)}

RATE_lemmal.iclock_sym: Lemma
correct_during(p, z'c:f,(T), icj’(S))
A correct_during(gq, ¢c;(T), icg(S)) A § > T Aicy () 2 icy ()
D [ich(S) — it ()| < |ich(T) — ici(T)| + 2% px (S —T)

RATE_lemmal_iclock_sym_pr: Prove RATE_lemmal.iclock_sym from
RATE_1.iclock,
RATE_2_simplify_iclock {p < ¢},
Rllhack
{o — ici(S),

y — ic,(S),

w — icg(T)+ (S=T)x(1-p),

z — ic;,(T) +(S-T)x(1+p)},
mult_distrib {z — S - T, y — 1, z < p},
mult_ldistrib_minus {z — § - T, y < 1, z < p},
abs_plus {z « icﬁ,(T) - ich(T), y—2%px(S-T)},
mult.com {z —p, y ~ S - T},
abs_ge0 {z — 2xpx (S5 -T)},
mult_non_neg {z «— p, y — S — T},
rho_0



RATE_lemmal.iclock_pr: Prove RATE_lemmal.clock from
RATE_lemmal_clock_sym,
RATE_lemmal_clock_sym {p — ¢, ¢ — p},
abs_com {z — ic(5), y «— ici(S)},
abs_com {z « ic,(T), y « ic:(T)}

RATE_lemma2_pr: Prove RATE_lemma2 from
RATE_1,
RAT E_2_simplify,
mult_abs_hack {z « § — T, y < pc,(5) — pc,(T)},
abs_ge0 {z — S — T}

RATE_lemma2.iclock_pr: Prove RATE_lemma2.iclock from
RATE lemma2 {§ « S — adj,, T « T — adj,},
iclock_defn {T" «— S},

iclock_defn

wpred_lo_lem_pr: Prove wpred_lo_lem from
wpred_correct,
correct during {s — t3t!, t — #1, 1 — 1}

wpred_hi_lem_pr: Prove wpred_hi_lem from
wpred_correct,
correct_during {s «— t;“, t — t;;, t — t:,"’l}

correct_during_hi_pr: Prove correct_during_hi from correct_during {t; — s}
correct_during_lo_pr: Prove correct_during_lo from correct_during {t; «— t}
mult_assoc: Lemma z x(yx2) = (2 xy) x 2

mult_assoc_pr: Prove mult_assoc from
*1x*x2 {y « y*z},
*1 x %2,
*1x*x2 {z — vy, y « 2},
*l*x2 {z —z*xy, y— 2}

diff_squares: Lemma (1+ p)x(1—p)=1—p*xp

diff_squares_pr: Prove diff_squares from
distrib {:L' — 1, y—p, 21 —p},
mult_lident {z — 1 — p},
mult_ldistrib_minus {z — p, ¥y « 1, z « p},
mult_rident {z « p}



rate_simplify_step_pr: Prove rate_simplify_step from
mult.com {z — (S —-T), y — (1 - p)},
mult_assoc {z — 14+ p, y—1—p, 2z S -T},
diff_squares,
distrib_minus {z «— 1, y «— pxp, 2 < § =T},
mult_lident {z — 5 — T},
pos_product {z «— pxp, y— S —T},
pos_product {z «— p, y « p},
rho 0

rate_simplify_pr: Prove rate_simplify from
div_ineq
{z < (1+p),

y—(5-1),

2 (1+p)%(S = T)%(1- p)},
divecancel {z — (14 p), y = (S-T)*x(1 - p)}.
rho 0,
rate_simplify_step

RATE_2_simplify_pr: Prove RATE_2 simplify from RATE_2, rate_simplify

iclock_lem_pr: Prove iclock_lem from _
iclock_defn, IClock_defn {t « ic,(T)}, clock.axl {T' « T — adj;}

iClock_.ADJ_lem_pr: Prove IClock_ ADJ_lem from
IClock_defn, IClock.defn {i « i+ 1}, ADJ:2

iclock_ADJ_lem_pr: Prove iclqck_ADJ_Iem from
iclock_defn {T' « T — ADJ.}, iclock_defn {i — i + 1}, ADJ}}

ADJ_lem1_pr: Prove ADJ_leml from
ADJ_lem2, ‘
translation_invariance {X « —IC(t¥1), v — ©3+1}

ADJ_lem2_pr: Prove ADJ_lem2 from
ADJ3
adiid {i —i+1},
iClock_defn {t « t;‘”, i—1},
correct_during_hi {t «— s, s « t;“‘l}

End delay
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B.3 delay2

delay2: Module

Using arith, clockassumptions, delay
Exporting all with clockassumptions, delay
Theory

?,4,P1,q1: Var process
i: Var event
delay_pred: function[event — bool] =

(Xi:(Vp,q:wpred(i)(p) A wpred(i)(q) D |si — si| < B3'))
ADJ_pred: function[event — bool] = .
(Ai:(Vp:i>1Awpred(i —1)(p) D |ADJ ™ < a(|8 +2xA'])))

delay_pred_Ir: Lemma ‘ .
delay_pred(i) D (wpred(¢)(p) A wpred(%)(q) D |s}, — 5| < B')

bnd_delay_offset: Theorem ADJ_pred(7) A delay_pred(¢)

bnd_delay_offset_0: Lemma ADJ_pred(0) A delay_pred(0)

bnd_delay_offset_ind: Lemma
ADJ_pred(i) A delay_pred(¢) D ADJ_pred(: + 1) A delay_pred(z + 1)

bnd_delay_offset_ind_a: Lemma delay_pred(¢) D ADJ_pred(i + 1)

bnd_delay_offset_ind_b: Lemma
delay_pred(i) A ADJ_pred(i + 1) D delay_pred(i + 1)

good_ReadClock: Lemma .
delay_pred(7) A wpred(¢)(p) D okay_Readpred(O;,"'l, B+ 2x A, wpred(7))

good_ReadClock_recover: Axiom '
delay_pred(i) A rpred(i)(p) D okay_Readpred(@4t, 8’ + 2 x A’, wpred(z))

delay_prec_enh: Lemma
delay_pred(7) A wpred(2)(p) A wpred(é)(q)
D (s}, —st) — (ADJ, — ADJ,)| < w([2% A"+ 2], |f + 2+ A])

delay_prec_enh_stepl: Lemma
delay_pred(¢) A wpred(7)(p) A wpred(7)(g)
S lefnlp, (Apy : O (pr) — ICH(E) = [55]))
— ¢fn(g,(Ap1: O (;) — IC(t+) — [s31))
<w([2% A +2], (8 +2+ A))



delay_prec_enh_stepl_sym: Lemma ' ’ . '
delay_pred(z) A wpred(z)(p) A wpred(i)(q) A (ADJ, — s, > ADJ; — s;)
D |(ADJ} — si) — (ADJ} — i)
< lefa(p, (Ap1 : O3 (p1) — ICH(5) = [s}]))
— ¢fn(g, (Ap1 : O3 (pr) — ICH(5HY) — [si1))

prec_enh_hypl: Lemma
delay_pred(7) A wpred(¢)(p) A wpred(i)(q)
D okay_pairs(( A py : ©5F(py) — IC’;(t;}"’l) - st]),
(Ap1: O (p1) — IC () — [s31),
2+ A 42,
wpred(1))

prec_enh_hyp_2: Lemma
delay_pred (%) A wpred(2)(p)
D okay_Readpred(( A p; : (");Z,'*'1 (;) — IC’;(t;‘*‘l) - LS;J),
B +2x A,
wpred(z))
prec_enh_hyp_3: Lemma
delay_pred(i) A wpred(¢)(q)
D okay_Readpred(( A p; : @5+ (py) — IC,(1:¥1) — [si]),
B +2xAN,
wpred(?))

Proof

delay_pred_lr_pr: Prove delay_pred_Ir from delay_pred



delay_prec_enh_stepl_pr: Prove delay_prec_enh_stepl from
precision_enhancement_ax
{ppred — wpred(?),
Y « [/ +2+A],
X |_2 * A + 2_| , .
¥ = (Ap1: 05 (py) — ICL () = [s;)),
6 — (Apy : O (py) — ICH(#) — [si])},
prec_enh_hypl,
prec.enh_hyp_2,
prec_enh_hyp_3,
wpred_ax,
okay_Readpred_floor
{ppred — wpred(z),
y—B +2xA,
v < 7@pl},
okay_Readpred_floor
{ppred — wpred(3),
y— B +2xA,
¥ « 6@pl},
okay_pairs_floor
{ppred «— wpred(i),
z—2xA +2,
¥ < 7@pl,
0 — 6epl1}

prec_enh_hyp_2_pr: Prove prec_enh_hyp_2 from
good_ReadClock,
okay_Readpred .
{7 = (Ap1: O (m) — IC, () = sp)),
ye—pB +2+A,
ppred — wpred(i)},
okay_Readpred
{r < 6,1,
y—pB +2xAN,
ppred «— wpred(?),
l — [Qp2,
m — m@Qp2}

94



prec_enh_hyp_3_pr: Prove prec_enh_hyp_3 from
good_ReadClock {p «— ¢},
okay_Readpred _
{7 = (Ap1: O (p1) — ICy(t5+1) = [s31),
ye—pB4+2+A,
ppred — wpred(z)},
okay_Readpred
{y < 65,
ye—pB +2+A,
ppred «— wpred(%),
| — l@p2,
m +— m@p2}

bnd_del_off_0_pr: Prove bnd_delay_offset_0 from
ADJ_pred {i — 0},
delay_pred {i « 0},
bnd_delay_off_init {p — p@p2, ¢ — q@p2}

bnd_delay_offset_ind_pr: Prove bnd_delay_offset_ind from
bnd_delay_offset_ind_a, bnd_delay_offset_ind_b

bnd_delay_offset_pr: Prove bnd_delay_offset from
induction {prop « (A% : ADJ_pred(¢) A delay_pred(%))},
bnd_delay_offset_0,
bnd_delay_offset_ind {¢ — j@pl}

a,b,c,d,e, f,g,h: Var number

abs_hack: Lemma |a — b|

<le—fl+lle—e)—(d—e)+|(b—c)—(d— )

abs_hack_pr: Prove abs_hack from
abs_com {z — f, y — e},
abs_.com {z — (d— f), y— (b—¢)},
abs_plus
{2 (f-e)
y—((a=) - (d=e) +((d= ) - (-},
absplus {z — ((a—c)—(d—e)), y = ((d= f) = (b—¢))}

abshack2: Lemma [a| <bA|c| <dAle]<dDla|+|c|+ |e] <b+2xd

abshack2_pr: Prove abshack2



good_ReadClock_pr: Prove good_ReadClock from

okay_Readpred
{r = 65",

y— 0B +2xA,

ppred — wpred(z)},
delay_pred {p « [@pl, ¢ — m@pl},
delay_pred {q — lQp1},
delay_pred {g «— m@p1},
reading_error3 {q — lQ@pl},
reading_error3 {q «— m@pl},
abs_hack

{a « ®;+1(l@p1),

b~ ®;f1(m@p1).

c — IC,(#}1),

d « sp,

€ — 8;.@1)1’

f - S:n@pl}’
abshack?2

{a — eQ@p7 — fQ@p7,

b— g,

¢ — ((a@p7 — c@p7) — (d@p7 — e@p7)),

d— AN,

e — ((b@p7 — c@p7) — (d@p7 — f@p7))},
good_read_pred_ax1 {q « l@Qpl},
good_read_pred_axl {q «— m@pl},
wpred_fixtime,
wpred_fixtime {p « [Qpl},
wpred_fixtime {p — m@pl},
betaread_ax
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bnd_del_off.ind_a_pr: Prove bnd_delay_offset_ind_a from
ADJ_pred {i — i+ 1},
ADJ_lem2 {p — p@pl},
accuracy._preservation_ax
{ppred « wpred(z),
Y < 06
p < pQ@pl,
q < p@pl,
X [B+2+ ]},
wpred_ax,
read_self {p — pQ@pl},
good_ReadClock {p — p@p1},
wpred_fixtime {p — p@p1},
okay_Readpred_floor
{ppred «— wpred(z),
Y < v0p3,
Y — B+ 2= A'}

abshack4: Lemmaa—-b>c¢—d

Dl(a—=b)—(c—d) <|(a—[b]) — (¢~ [d])]
floor_hack: Lemma a — |b] > a—b
floor_hack_pr: Prove floor_hack from floor_defn {z «— b}
ceil_hack: Lemma ¢ — d > ¢ — [d]
ceil_hack_pr: Prove ceil_hack from ceil_defn {z — d}

abshack4_pr: Prove abshack4 from
abs_ge0 {z «— (a — b) — (¢ — d)},
abs_ge0 {z — (a — [5]) ~ (c — [d])},
floor_hack,
ceil_hack

X: Var Clocktime

ADJ_hack: Lgm_ma wpred(z)(p) _ o
D ADJ; — X = cfnlp,(Ap1 : 051 (p1) - IC(H1) ~ X))

ADJ_hack_pr: Prove ADJ_hack from
ADJ_leml,
translation_invariance
{7 < (Ap1 — Clocktime : ©i+1(py) — ICL(2it1)),
X « —-X},
wpred_fixtime
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delay_prec_enh_stepl_sym_pr: Prove delay_prec_enh_stepl_sym from
ADJ hack {X — [s}]},
ADJ_hack {p «— ¢, X « [s}]},
abshack4 {a — ADJE, b — s:,, Cc— ADJ;, d « sfl}

abshack5: Lemma [((a - b) - (lc] = d)) = ((e = f) = ([g] — @))|
<l(a=b)—(le] = D +1(e = ) = (T9] = )|

abshack5_pr: Prove abshack5 from
abs_com {z — e— f, y — [g] — d},
abs_plus {z «— (a —b) — (lc] = d), y — ([g] —d) — (e - f)}

absfloor: Lemma |a — [b]| < |a—b| + 1
absceil: Lemma |a — [b]| <|a—b|+1

absfloor_pr: Prove absfloor from
floor_defn {z < b}, | x1| {z «— a— |b]}, | *1]| {z «— a — b}

absceil_pr: Prove absceil from

ceil_ defn {z «— b}, | x1| {z — a— [b]}, |*x1| {z «— a— b}
abshackba: Lemma |(a —b) — (|¢] —d)| < |(a—=b)— (c=d)| + 1
abshack6b: Lemma |[(e — f) — ([g] = d)| < |(e— f)— (9 —d)| + 1

abshack6a_pr: Prove abshack6a from
absfloor {a — (a —b) + d, b« ¢},
abs_plus {z — (a—b)— (¢ —d), y — 1},
abs_ge0 {z — 1}

abshack6b_pr: Prove abshack6b from
absceil {a — (e — f)+d, b — g},
abs plus {z — (¢ — ) — (g — d), y — 1},
abs_ge0 {z « 1}

abshack7: Lemma |[(a = b) - (c—d)| < hAlle—f)—(9—-d)| <R
Dl((a—8)—(le] -d)) —((e=f) - (gl - < 2% (h+1)

abshack7_pr: Prove abshack7 from abshackb, abshack6a, abshack6b



prec_enh_hypl_pr: Prove prec_enh_hypl from
okay_pairs _
{7 = (Apr : @+ (py) — ICH(EH) — [55)),

6 — (A1 : @3 (py) — ICH(#:41) — [st]),

z—2x(A+1),

ppred «— wpred(?)},
delay_pred {q «— p3@p1},
delay_pred {p «— ¢, q < p3@pl},
reading_error3 {q «— p3@pl},
reading_error3 {p «— q, q — p3@pl},
good_read_pred_ax1 {q «— p3@pl},
good_read_pred_ax1 {p — ¢, ¢ «— p3@pl},
abshack7

{a — 05 (p3@p1),
b — IC;,(t;,+1),
C — S
2

d — 'Sp;@pl’

e — 9;+'1(p3@P1),

f = IC (54,

g < S5,

h «— A},
wpred_fixtime,
wpred_fixtime {p — ¢},
wpred_fixtime {p «— p3@pl},
betaread_ax

abshack3: Lemma |[(a — b) — (¢ — d)| = |(c — a) — (d = b)|
abshack3_pr: Prove abshack3 from abs_com {z <« a ~ b, y «— ¢ — d}

delay_prec_enh_pr: Prove delay_prec_enh from
delay_prec_enh_stepl,
delay_prec_enh_stepl {p — ¢, ¢ — p},
delay_prec_enh_stepl_sym,
delay_prec_enh_stepl_sym {p « ¢, q¢ — p},
abs_com {z —~ ADJ;; —sh, Y~ ADJ; - s;},
abshack3 {a « si, b — si, c — ADJ;, d — ADJ;}

End delay2
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B.4 delay3

delay3: Module

Using arith, clockassumptions, delay?2
Exporting all with clockassumptions, delay2
Theory

p,q,P1,q1: Var process
t: Var event
T: Var Clocktime
good_interval: function[process, event, Clocktime — bool] =
(Ap,i, T : (correct_during(p, §;, ic;+1(T)) AT - ADJ; > _Si)
V (correct_during(p, ic;™ (T),s;) A S* > T — ADJ}))

recovery_lemma: Axiom
delay_pred(¢) A ADJ_pred(i + 1)
A rpred(i)(p) A correct_during(p, t5+, t5+2) A wpred(i + 1)(g)
D |sptt — st < B

good_interval_lem: Lemma .
wpred(i)(p) A wpred(i + 1)(p) A ADJ_pred(i + 1) D good_interval(p, i, $**1)

betaprime_ax: Axiom

4*p*(R+a(|ﬂ’+2*A']))+1r(|_2*(A'+ D, 18+2«xA])<p

betaprime_ind_lem: Lemma
ADJ_pred(z + 1) A wpred(z)(p)
D2xpx(R+a(|f+2xA|))+w(2x(A+ D], +2xA )< F

betaprime_lem: Lemma

24 px(R+a(|f +2+xA'))+#w([2x(A+ 1), |8 +2xA]) < F
R_0_lem: Lemma wpred(¢)(p) A ADJ_pred(: + 1) D R > 0

bound_future: Lemma
delay_pred(i) A ADJ_pred(i + 1)
A wpred(i)(p)
A wpred(i)(g) A good_interval(p, i, T) A good_interval(g, i, T)
D [t (T) — ictH(T)|
<Bxpe(IT = 5 +a(|f +2+ A']))
F (|24 (A + 1), [§ + 2% 1))

bound_futurel: Lemma
delay_pred(i) A ADJ_pred(: + 1) A wpred(<)(p) A good_interval(p, ¢, T)
> |(ic(T — ADJ;) — s) — (T — ADJ; — §%)|
<px(IT = ST+ a([B +2+ A']))
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bound_futurel_step: Lemma
delay_pred(i) A ADJ_pred(i + 1) A wpred(¢)(p) A good.-interval(p, ,T')
D |(ic,(T — ADJ}) — %) — (T — ADJ; — §%)| < p* (|T — ADJ; — 5%|)

bound_FIXTIME: Lemma
delay_pred(i) A ADJ_pred(i + 1)
A wpred()(p)
A wpred()(q)
A good.interval(p, i, $'t1) A good.interval(q, i, S*+1)
5 |s;',+1 — sz+1| < g

bound_FIXTIME2: Lemma
delay_pred(:) A ADJ_pred(i + 1) A wpred(¢)(p) A wpred(z)(q)
> (wered(i + 1)(p) A wpred(i + 1)(g) > |5+ — si+1] < ')

delay_offset: Lemma wpred(:)(p) A wpred(i)(g) D |s& — si| < B
ADJ_bound: Lemma wpred(i)(p) D |ADJ}| < a(|8’' + 2 * A'])
Alpha_0: Lemma wpred(z)(p) D a(|#'+2xA']) >0

Proof

ADJ_pred_lr: Lemma .
ADJ_pred(i 4+ 1) D (wpred(i)(p) D |ADJ,| < a(|8'+ 2+ A'}))

ADJ_pred_lr_pr: Prove ADJ_pred_Ir from ADJ_pred {¢ — i + 1}

betaprime_ind_lem_pr: Prove betaprime_ind_lem from
betaprime_ax,
pos_product {z «— p, y — R+ a(|8'+2xA])},
rho_0,
R_FIX_SYNC_O,
FIX.SYNC,
ADJ_pred._lr,
| x1| {z — ADJ}}

betaprime_lem_pr: Prove betaprime_lem from
betaprime_ind_lem {p «— pQ@Qp4},
bnd_delay_offset {¢ — ¢+ 1},
wpred_ax,
count_exists {ppred «— wpred(i@Qpl), n — N},
N_maxfaults

delay_offset_pr: Prove delay_offset from bnd_delay_offset, delay_pred

ADJ_bound_pr: Prove ADJ_bound from
bnd_delay_offset {¢ — ¢+ 1}, ADJ_pred {¢ «— ¢ + 1}
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ai, by, c¢1,di: Var number

abs_0: Lemma |a,| < b; Db; >0

abs_0_pr: Prove abs_0 from | x1| {z — a1}

Alpha_0_pr: Prove Alpha_0 from ADJ_bound, | x1| {z « ADJ}}
R.0_hack: Lemma wpred(i)(p) A ADJ_pred(i + 1) D §*+! — §¢ > 0

R_0_hack_pr: Prove R_0O_hack from
ADJ_pred {i — i+ 1},
FIXTIME_bound,

wpred_hi_lem, '
abs 0 {ay — ADJ;, by — a(|f'+2xA'|)}

R_0_lem_pr: Prove R_0_lem from R_0_hack, $*! , §*1 {i « i 4+ 1}
abshack_future: Lemma |(a1 — b1) — (¢1 — d1)| = |(a1 — ¢1) — (b1 — d1)]
abshack_future_pr: Prove abshack_future

abs_minus: Lemma |a; — by| < |a1| + |b1]

abs_minus_pr: Prove abs_minus from
%1 {z — a1 — b}, [* 1] {z — a1}, |* 1] {z — by}

bound_futurel_pr: Prove bound_futurel from
bound_futurel_step,
abs_minus {a; «— T — St by — ADJ;},
ADJ_pred {i — i+ 1},
mult_leq_2
{z=p

y — |T — ADJ; - S,

2 |T— S+ a(|8 +2+ A},
rho_0

bound_futurel_step_a: Lemma
correct_during(p, ic:f,(T - ADJ,), s;;) AS'>T - ADJ;
D |(ici(T — ADJ}) — si) — (T — ADJ; — §%)| < p* (|T — ADJ; — 5%|)

bound_futurel_step_b: Lemma ' _
correct_during(p, sy, ic,(T — ADJ,)) AT — ADJ; > St
D |(icy(T — ADJ}) — st) — (T — ADJ; — 8%)| < p (|T — ADJS - S%|)
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bound_futurel_step_a_pr: Prove bound_futurel_step_a from

RATE_lemma2.iclock {T — T — ADJ}, § — S%},

*2
41 o

abshack_future
{a, « ic(T — ADJ}),
b] — s! ’
¢1 =T — ADJ.,
dy « S},
abs_com {z — a,@p3 — ¢;@p3, y « b;@p3 — d;@p3},
abs_com {z — T'Qpl, y « SQ@pl}

bound_futurel_step_b_pr: Prove bound_futurel_step_b from

RATE_lemma2.iclock {S « T — ADJ;, T « S'},

ek

abshack_futpre .
{a; « ig;,(T - ADJ;,),
bl — 3;,,

e —T- ADJ:,
dy — S*}

bound_futurel_step_pr: Prove bound_futurel_step from
good_interval, bound_futurel_step_a, bound_futurel_step_b, iclock_ ADJ_lem

good_interval_lem_pr: Prove good.interval_lem from
good_interval {T «— §it1},
2 {i—i+1},
wpred_fixtime,
wpred_fixtime_low {i « i + 1},
correct_during_trans {t — 3;';, ty «— tf,‘*'l, 8 — s§,+1},
wpred_hi_lem,
FIXTIME_bound,
ADJ_pred {i — ¢ + 1},
| %1 {z — ADJ}}

bound_FIXTIME2_ pr: Prove bound_FIXTIME2 from
bound_FIXTIME, good_interval_lem, good_interval_lem {p — ¢}

bound_FIXTIME pr: Prove bound_FIXTIME from
bound_future {T" « 5'+1},
S*l ,
S i —i+1},
abs_ge0 {z « R},
R_0_lem,
s53 {p —pOpl, i —i+1},
s:% p+— q@pl, i — 341},
betaprime_ind_lem



bnd_delay_offset_ind_b_pr: Prove bnd_delay_oﬂ"set_ind_b from

bound_FIXTIME2 {p — p@p2, q — q@p2},
delay_pred {i «— ¢ + 1},

delay_pred {p «— p@p2, q — q@p2},
recovery_lemma {p — p@p2, g — q@p2},
recovery_lemma {p «— ¢@p2, ¢ — pQ@p2},
abs_com {z «— s;'&lpz, Y — sz"é;z},
wpred_preceding {p — p@p2},
wpred_preceding {p — ¢@p2},
wpred_correct {i — i+ 1, p «— p@p2},
wpred_correct {i — i+ 1, p «— ¢@p2}

a,b,c,d,e, f,g,h,aa, bb: Var number

abshack: Lemma |a — b|
<l(@—e)—(c—f = D) +|(b-g)~ (c~h—d)
+1(e—9)— (f - h)|

abshack2: Lemma |(a —e) — (¢c— f — d)| < aa

Al(b—g)—(c—h—d)|<aan|(e—g)—(f—h)| <bb

Dla—b<2xaa+bb
abshack2_pr: Prove abshack2 from abshack

abshack_pr: Prove abshack from
abs.com {z —b—g, y — c—h—d},

absplus {x —(a—e)—(c—f—d), y—(¢c—h—-d)— (b-g)},

abs_plus {z — 2@p2 + y@p2, y — (e —g)— (f— h)}

bound_future_pr: Prove bound_future from
bound_futurel,
bound_futurel {p — ¢},
delay_prec_enh,
iclock_ADJ_lem,
iclock-.ADJ_lem {p < ¢},
abshack2
{a « ic,(T — ADJ}),
b~ ici(T — ADJ}),
cT,
d — S*,
€ — S, .
f — ADJj,
g Sy
h — ADJ;, .
aa — p*x(|T— S+ a(|8' +2*A'])),
bb — w([2x(A"+ 1), +2+A'])}
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End delay3
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B.5 delay4

delay4: Module

Using arith, clockassumptions, delay3
Exporting all with clockassumptions, delay3
Theory

P,4,P1,q1: Var process

t: Var event

X, S8, T: Var Clocktime

s,t,11,t2: Var time

v: Var function[process — Clocktime]
ppred, ppredl: Var function[process — bool]
optionl, option2: bool

optionl_defn: Axiom
optionl D Tt = (i + 1)* R+ T°A(B=2xpx(R—(5°-T°)+ ')

option2_defn: Axiom .
option2 D T3*!' = (i+ 1) *x R+ T° — ADJ;
ANB =B —2*xpx(S°—-TO)

options_disjoint: Axiom —(optionl A option2)

optionl_bounded_delay: Lemma _ ‘
option1 A wpred(¢)(p) A wpred(i)(q) D [ttt — ¥ < B8

option2_bounded_delay: Lemma . .
option2 A wpred(z)(p) A wpred(i)(g) D |tit! — ¢4+ <

optionl_bounded_delay0: Lemma
optionl A wpred(0)(p) A wpred(0)(g) D [t — 9| < 8

option2_bounded_delay0: Lemma
option2 A wpred(0)(p) A wpred(0)(g) D [t — 3| < 8

option2_convert_lemma:’' Lemma
(B=p8 =2%px(8°-T°)
D24px((R—(S°-T%)+a(|lf +2xA]))
+w([2x (A + 1)), |8 +2+A))
<B

option2_good._interval: Lemma
option2 A wpred(¢)(p) D good_interval(p, i, (i + 1) * R + T°)

options_exhausted: Axiom optionl V option2
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Proof

rts_2_hi_pr: Prove rts_2_hi from
options_exhausted, optionl_bounded_delay, option2_bounded_delay

optionl_bounded_delay0_pr: Prove optionl_bounded_delay0 from
bnd_delay_init,
optionl_defn,
pos_product {z « p, y « §° —T°},
pos_product {z «— p, y «— R — (§° - T0)},
R_FIX_SYNC_O0,
FIXSYNC,
rho_0

option2_bounded_delayQ_pr: Prove option2_bounded_delay0 from
bnd_delay.init, option2_defn

optionl_bounded_delay_pr: Prove optionl_bounded_delay from
RATE_lemmal.clock {S « (i+ 1)« R+ T°, T « §'},
S*l ,
delay_offset,
wpred_fixtime,
wpred_fixtime {p — ¢},
synctime_defn,

synctime_defn {p — ¢},

*2
Si1 »

s {p = @},
optionl_defn,
optionl_defn {p — ¢},
R_FIX_SYNC_0,

optionl_defn

option2_good._interval_pr: Prove option2_good_interval from
good_interval {T «— T;*! + ADJ}},
wpred_fixtime,
wpred_hi_lem,
rts_new_1,
iclock_ADJ_lem {T — T@p1},
synctime_defn,
Alpha_0,
option2_defn
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option2_convert_lemma_pr: Prove option2_convert_lemma from
betaprime_lem,
mult_ldistrib_minus

{z —p,
y—R+a(|f+2xA]),
z — (8°-T%)}

option2_bounded_delay_pr: Prove option2_bounded_delay from
option2_convert_lemma,
option2_good_interval,
option2_good.interval {p « ¢},
bound_future {T « (i + 1) * R + T°},
option2_defn,
option2_defn {p < ¢},
iclock_.ADJ_lem {T' — T@p4},
iclock_.ADJ_lem {T — T@p4, p « q},
synctime_defn,
synctime_defn {p < ¢},
S*l ,
"R_O_lem,
bnd_delay_offset,
bnd_delay_offset {i — i + 1},
abs_ge0 {z — (R — (S° - T?))},
R_FIX_SYNC_O0,
option2_defn

End delay4
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B.6 new_basics

new_basics: Module

Using clockassumptions, arith, delay3
Exporting all with clockassumptions, delay3
Theory

p, q: Var process

t,7,k: Var event

z,Y, Y1, Y2, 2. var number

r,s,t,11,t2: Var time

X,Y: Var Clocktime

(1 f %2)[+3]: Definition function[process, process, event — process] =
(Ap,g,i:(if t, > t; then p else ¢ end if))

maxsync_correct: Lemma correct(p, s) A correct(q, s) D correct((p 1 ¢)[%], s)

minsync: Deﬁnitiqn fu_nction[process, process, event — process| =
(Ap,q,i:(ift; > ¢t} then ¢ else p end if))

minsync_correct: Lemma correct(p, s) A correct(q, s) D correct((p | ¢)[7], s)
minsync.maxsync: Lemma t'('puq)[z-] < t’('pﬁq)[i]

3 +2: Definition function[process, process, event — time] =
(AP a:%: tippgyp)

delay_recovery: Axiom . _
rpred(i)(p) A wvr_pred(i)(g) D |5 — #i+1| < 8

rtsO_new: Axiqm wpred(¢)(p)
Dl — i < (14 p)* (R +a(|f + 2% A')))

rtsl_new: Axiom wpred(7)(p) . _
D((R-—a(lf +2+N])/(1+p) <ttt =1,

nonoverlap: Axiom 8 < ((R— a(|8' +2+A']))/(1+ p))
lemma_1: Lemma wpred(4)(p) A wpred(é)(q) D #, < tit!
lemma_1_1: Lemma wpred(:)(p) A wpred(i + 1)(g) D t;; < tf{"l
lemma_1.2: Lemma wpred(i)(p) A wpred(i + 1)(g) D t5F! < ¢:+2

lemma_2_1: Lemma correct(q, t;t1)
> It = efn(g, B3F1)
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rts_2_lo_i: Lemma ’ .
wpred(i + 1)(p) A wpred(i + 1)(q) D |15 — 51| < 8

rts_2_lo_i_recover: Lemma . .
rpred(i)(p) A wpred(i + 1)(g) D |5+ — 1i+1] < 8

synctime_monotonic: Axiom ¢ < j D té < t;

working_clocks_lo: Lemma .
wpred(i + 1)(p) A5t <t Awpred(i)(g) Dt < t

working_clocks_hi: Lemma .
wpred(i)(p) At < t5t! A wpred(i + 1)(¢) D t < ti*?

working_clocks_interval: Lemma

i > 0 A wpred(i)(p) ’ ' .
' /}wpre_igj)(q) A t;?+§ tAT <A <tAt <t
11— T
Dttt <t At < 8

Proof

working_clocks_lo_pr: Prove working_clocks_lo from
lemma_l.l {p < q, ¢ — p}

working_clocks_hi_pr: Prove working_clocks_hi from lemma_1_2

rts_2_lo_i_recover_pr: Prove rts_2_lo_i_recover from
delay_recovery, wpred_preceding {p — ¢}, wvr_pred {p — ¢}

rts_2_lo_i_pr: Prove rts_2_lo_i from
rts_2_lo_i_recover,
rts_2_lo_i_recover {p «— ¢, ¢ — p},
abs_com {z — tiH, y — ti+1},
rts_2_hi,
wpred_preceding,
wpred_preceding {p — ¢}

rts_.2_lo_pr: Prove rts_2_lo from rts_2_lo_i {¢ < pred(¢)}, bnd_delay_init
maxsync_correct_pr: Prove maxsync_correct from (x1 f} x2)[x3]
minsync_correct_pr: Prove minsync_correct from minsync
minsync_maxsync_pr: Prove minsync_maxsync from minsync, (x1 {} x2)[*3]

lemma_l_proof: Prove lemma_l from
rts 2_hi, rtsl_new, | x 1| {z «— t5t1 — ¢;*1}, nonoverlap
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lemma_2_1_proof: Prove lemma2_1 frqm
IClock defn {p — q, i —i+1, t — t"q+1},
ad]ﬁ {t—i+1, p—gq}

lemma_1_1_proof: Prove lemma_l1_1 from
rts_2_hi,
wpred_preceding {p « ¢},
delay_recovery {p — ¢, ¢ — p},
abs_com {z « t;"‘], Y — tf;"'l},

wvr_pred,
- 1
| x1| {z < t;‘*’ —t;‘*‘ }.
rtsl_new,
nonoverlap

lemma_l_2_proof: Prove lemma_1_2 from
rts_2_hi,
wpred_preceding {p < ¢},
delay_recovery {p — ¢, ¢ — p},
abs_com {z — titl, y — tit1},
wvr_pred,
| %1] {z « t5F! — 221},
rtslnew {p — ¢q, ¢t — i+ 1},
nonoverlap

End new_basics



B.7 rmax_rmin

rmax_rmin: Module

Using clockassumptions, arith, delay4, new_basics
Exporting all with clockassumptions, delay4
Theory

P,q: Var process
i, J,k: Var event
z,Y, Y1, Y2, 2. Var number
r,8,t,11,12: Var time
X,Y: Var Clocktime
rmax_pred: function[process, event — bool] =
(Ap,i:wpred(i)(p)
S = < (14 p) % (R+ a([f + 2% A'])))
rmin_pred: function[process, event — bool] =
(Ap,i:wpred(i)(p) . '
> (B= (B +2+ A))/(L+p) < i — 1))

ADJ_recovery: Axiom optionl A rpred(i)(p) O |ADJ}| < a([B8' + 2+ A'])
rmax1l: Lemma optionl D rmax_pred(p, )
rmax2: Lemma option2 D rmax_pred(p, 7)
rminl: Lemma optionl D rmin_pred(p, )

rmin2: Lemma option2 D rmin_pred(p, )

Proof

rtsO_new_pr: Prove rtsO_new from options_exhausted, rmax1, rmax2, rmax_pred
rtsl_new_pr: Prove rtsl_new from options_exhausted, rminl, rmin2, rmin_pred
rmin2_0: Lemma option2 D rmin_pred(p, 0)

rmin2_plus: Lemma option2 D rmin_pred(p,:+ 1)

rmin2_pr: Prove rmin2 from rmin2_0, rmin2_plus {z « pred(%)}
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rmin2_0_pr: Prove rmin2_0 from
rmin_pred {i — 0},
synctime0_defn,
synctime_defn {i «— i@Qpl},
option2_defn {¢ — i@pl},
R.0,
RATE 2.iclock {i «— i@pl, S « Tg@pl"'l, T « T°},
wpred_correct {¢ «— i@pl},
div_ineq
{z = (1+))
y — R — ADJ;®%!,
o= R—a(|f +2+N])},
rho_0,
ADJ_bound {i « i@pl},
| x1| {z — ADJi®"},
R_bound {i — :@pl},
wpred_hi_lem {i — :@Qpl},
Alpha_0 {{ — iQpl}

rmin2_plus_pr: Prove rmin2_plus from
rmin_pred {¢z — ¢+ 1},
synctime_defn,
synctime_defn {i — 1@pl},
option2_defn {i « i},
option2_defn {7 — i@pl},
R-0,
RATE_2_iclock
{i — i@p1,

S T;@pl'*'l,

T — Ti®"' + ADJ}},
wpred_correct {i — i@pl},
div_ineq

{z=(1+p)

y — R— ADJi®,

z—R-—a(|f +2xA])},
rho_0,

ADJ_bound {i « i@pl},

| x1| {z — ADJi®},

R_bound {7 « i@Qpl},

wpred_hi_lem {i «— i@pl},

Alpha_0 {: «— i@Qpl},

iclock ADJ_lem {i « i, T « Ti®! + ADJ:}

rmax2_0: Lemma option2 D rmax_pred(p, 0)

rmax2_plus: Lemma option2 D rmax_pred(p,: + 1)
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rmax2_pr: Prove rmax2 from rmax2_0, rmax2_plus {z < pred(z)}

rmax2_0_pr: Prove rmax2_0 from
rmax_pred {¢ — 0},
synctimeQ_defn,
synctime_defn {i — i@pl},
option2_defn {i — ¢Qpl},
R.0,
RATE_ l.clock {i < i@Qpl, S « T;@pl'*'l, T « T,
wpred_correct {i «— i@pl},
mult_leq_2
{z=(1+p)

y — R— ADJ;®?!,

z— R+a(|f +2xA))},
mult_com {z — (Ti®1+1 - T0), y — (1 + p)},
rho_0,
ADJ_bound {i « iQpl},
| x1] {z < ADJ;@”I’}.
R_bound {¢ « i@pl},
wpred_hi_lem {i — iQp1},
Alpha_ 0 {: — i@Qpl}

rmax2_plus_pr: Prove rmax2_plus from
rmax_pred {¢ — 7 + 1},
synctime_defn,
synctime_defn {i — :@pl},
option2_defn,
option2_defn {i — i@pl},
R-0,
RATE_1.iclock
{i — i@p1,

S — T;;@pl-l-l,

T — T;®P! + ADJ}},
wpred_correct {7 — ¢Q@Qpl},
mult_leq_2

{z=0+p) |

y — R — ADJi®,

z—R+a(|f +2xA])},
mult_com {z — (T;®P1+1 — (T:i®P1 4 ADJ})), y — (1+p)}.
rho_0,
ADJ_bound {i « :@pl},
| x1| {z «— ADJ®},
R_bound {i « i@p1},
wpred_hi_lem {¢ — i@Qp1},
Alpha_0 {7 « :@Qp1},
iclock ADJ_lem {i « i, T — Ti®' + ADJ}}
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rminl_0: Lemma optionl D rmin_pred(p,0)
rminl_plus: Lemma optionl D rmin_pred(p,i+ 1)
rminl_pr: Prove rminl from rminl1_0, rminl_plus {¢ — pred(7)}

rminl_0_pr: Prove rminl 0 from
rmin_pred {¢ — 0},
synctime0_defn,
synctime_defn {7 — i@Qpl},
optionl_defn {i — i@pl},
R-0,
RATE 2.iclock {7 «— i@pl, S « T;@pl*'l, T « T°},
wpred_correct {7 «— 1@pl},
Alpha_0 {i — i@p1l},
diviineq {z — (1+p), y— R, z — R—a(|f' +2xA'])},
rho_0

rminl_plus_pr: Prove rminl_plus from
rmin_pred {i — ¢ + 1},
synctime_defn,
synctime_defn {i «— @pl},
optionl_defn,
optionl_defn {i — i@pl},
R_0,
RATE_2_iclock
{i « 1@p1,

S — T;'@pl+1,

T — T;®"' + ADJ}},
wpred_correct {i — iQpl},
Alpha_0 {i — i@pl},

div.ineq
{z=1Q+p).
y < R— ADJ,,
r—R-—a(|f +2xA))},
rho 0,

R_bound {7 « i@pl},

wpred_hi_lem {i — i@pl},

| x1| {z — ADJ}},

ADJ_recovery,

ADJ_bound,

wpred_preceding,

iclock ADJ_lem {T' — T:®"' + ADJ:}

rmax1_0: Lemma optionl D rmax_pred(p,0)

rmax1_plus: Lemma optionl D rmax_pred(p,i+ 1)
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rmaxl_pr: Prove rmaxl from rmax1.0, rmax1_plus {i < pred(?)}

rmax1_0_pr: Prove rmax1.0 from
rmax_pred {i — 0},
synctimeO_defn,
synctime_defn {i — (@pl},
optionl_defn {i — i@pl},
R0,
RATE_L.iclock {i — i@pl, § « Ti®1+!, T — T},
wpred_correct {i — 1@pl},
Alpha_ 0 {; « i@pl},
multleq.2 {z — (1+p), y— R, 2 — R+ a(|f' +2xA'])},
mult_com {z « (T;®'*1 - T9), y — (1 +p)},
rho_0

rmax1_plus_pr: Prove rmaxl_plus from
rmax_pred {i — i + 1},
synctime_defn,
synctime_defn {7 «— i@pl},
optionl_defn,
optionl_defn {i — i@pl},
R-0,
RATE-1.iclock
{i «— 1Qpl,

S — Tg@pl+1’

T — T;®*' + ADJ;},
wpred_correct {i — 1@pl},
Alpha_0 {i — i@Qpl},

mult_leq_2
{z<=0+p),
y+— R— ADJ,,

z—R+a(|f +2xA])},
mult_com {2 « (Tzf@i"l'H - (T;@le + ADJ;)), y—1+p)}
rho_0,
R_bound {7 « i@pl},
wpred_hi_lem {i — i@p1},
| 1| {z — ADJ}},
ADJ_recovery,
ADJ_bound,
wpred_preceding,
iclock_ADJ_lem {T — T;®' + ADJ:}

End rmax_rmin



Appendix C

Fault-Tolerant Midpoint Modules

This appendix contains the EHDM modules and proof chain analysis showing that the
properties of translation invariance, precision enhancement and accuracy preservation have
been established for the fault-tolerant midpoint convergence function. In the interest of
brevity, the proof chain status has been trimmed to show just the overall proof status and

the axioms at the base.

C.1 Proof Analysis

C.1.1 Proof Chain for Translation Invariance

Terse proof chain for proof ft_mid_trans_inv_pr in module mid

The proof chain is complete

The axioms and assumptions at the base are:
clocksort.funsort_trans_inv
division.mult_div_1
division.mult_div_2
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division.mult_div_3
floor_ceil.floor_defn
ft_mid_assume.No_authentication

Total: 6

C.1.2 Proof Chain for Precision Enhancement

Terse proof chain for proof ft_mid_precision_enhancement_pr in module mid3

= == SUMMARY == =====

The proof chain is complete

The axioms and assumptions at the base are:
clocksort.cnt_sort_geq
clocksort.cnt_sort_leq
division.mult_div_1
division.mult_div_2
division.mult_div_3
floor_ceil.ceil_defn
floor_ceil.floor_defn
ft_mid_assume.No_authentication
multiplication.mult_non_neg
multiplication.mult_pos
noetherian[EXPR, EXPR].general_induction

Total: 11

C.1.3 Proof Chain for Accuracy Preservation

Terse.proof chain for proof ft_mid_acc_pres_pr in module mid4
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=zomcssss=ss = SUMMARY ===== == ====

The proof chain is complete

The axioms and assumptions at the base are:
clocksort.cnt_sort_geq '
clocksort.cnt_sort_leq
clocksort.funsort_ax
division.mult_div_1
division.mult_div_2
division.mult_div_3
floor_ceil.floor_defn
ft_mid_assume.No_authentication
multiplication.mult_pos
noetherian[EXPR, EXPR].general_induction

Total: 10
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C.2 mid
mid: Module

Using arith, clockassumptions, select_defs, ft_mid_assume
Exporting all with select_defs

Theory

process: Type is nat

Clocktime: Type is integer
l,m,n,p,q: Var process

9: Var function[process — Clocktime]
1,7, k: Var posint

T,X,Y,Z: Var Clocktime

¢fnpsrp: function[process, function[process — Clocktime] — Clocktime] =

(Ap, 9 : [(F(F1) + 9v-F))/2])
ft_mid_trans_inv: Lemma cfnpp(p, (A q: 9(q) + X)) = c¢fryrip(p, 9) + X
Proof
add_assoc_hack: Lemma X +Y +Z+4+Y = (X +Z)+2xY
add_assoc_hack_pr: Prove add_assoc_hack from x1 xx2 {z « 2, y «~ Y}

ft_mid_trans_inv_pr: Prove ft_mid_trans_inv from
cfrarp
cfangrp {9 — (Ag:9(q) + X)},
select_trans_inv {k — F + 1},
select_trans_inv {k — N — F},
add.assoc_hack {X « 9(pi1), Z ~ In_F), ¥ « X},
div_distrib {z — (d(py1) + I v-F), ¥ — 2% X, 2z« 2},
div_cancel {z «— 2, y — X},
ft_mid_maxfaults,
floor_plus_int {z «— z@p6/2, ¢ — X}

End mid



C.3 mid2

mid2: Module

Using arith, clockassumptions, mid
Exporting all with mid
Theory

Clocktime: Type is integer

m,mn,p,q,P1,q1: Var process

i,7,k,l: Var posint

z,y,2,7,8,t: Var time

D, X,Y,Z,R,S,T: Var Clocktime

9,60,~: Var function[process — Clocktime]

ppred, ppredl, ppred2: Var function[process — bool]

good_greater_F1: Lemma
count(ppred, N) > N — F' D (3 p: ppred(p) A ¥(p) > Y(Fi1))

good_less_.NF: Lemma
count(ppred, N) > N — F D (3 p: ppred(p) A 9(p) < I(n-F))

Proof

good_greater_F1_pr: Prove good_greater_F1 {p «— p@p3} from
count_geq.select {k — F + 1},
ft_mid_maxfaults,
count_exists
{ppred «— (A p1 : ppred1@p4(p;) A ppred2@p4(p,)),
n «— N},
pigeon_hole
{ppred1 « ppred,
ppred2 — (Apy : 9(p1) 2 I(Fi1)),
n— N,

ke~ 1}
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good_less_NF_pr: Prove good_less.NF {p — p@p3} from
count_leq_select {k — N — F'},
ft_mid_maxfaults,
count_exists
{ppred — (A py : ppred1@pa(p;) A ppred2@pd(p1)),
n— N},
pigeon_hole
{ppred1 — ppred,
ppred2 — (A p1 : Iv-rF) = (1)),
n«— N,
k+—1}

End mid2



C.4 mid3

mid3: Module

Using arith, clockassumptions, mid2
Exporting all with mid2
Theory

Clocktime: Type is integer

m,n,p,q,p1,q1: Var process

i,7,k,1: Var posint

z,Y,2,7,8,t Var time

D,X,Y,Z,R,S,T: Var Clocktime

9,0,~: Var function[process — Clocktime]

ppred, ppredl, ppred2: Var function[process — bool]

ft_mid_Pi: function[Clocktime, Clocktime — Clocktime] ==
(AX,Z:[Z/2+ X])

exchange_order: Lemma
ppred(p) A ppred(q)
A 8(q) < 8(p) A v(p) < 7(g) A okay_pairs(8, v, X, ppred)
D 10(p) -l < X

good_geq_F_addl: Lemma
count(ppred, N) > N — F D (3 p: ppred(p) A J(p) > U (ry1))

okay_pair_geq_F_add1l: Lemma
count(ppred, N) > N — F A okay_pairs(8,v, X, ppred)
o ( 3 pP1,q1:
ppred(p1) A 6(p1) > 6(ry1)
A ppred(g1) Ay(q1) 2 Y(F41) A 1O(P1) — 7(@1)| £ X)

good_between: Lemma
count(ppred, N) > N — F
D (3 p:ppred(p) A vr41) = Y(P) A B(P) > Ov-rF))

ft_mid_precision_enhancement: Lemma
count(ppred, N) > N — F
A okay_pairs(8,v, X, ppred)
A okay_Readpred (8, Z, ppred) A okay_Readpred(v, Z, ppred)
D |efrprp(p, 0) — cfrarrp(g, v)l < ft-mid_Pi(X, 7)
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ft_mid_prec_enh_sym: Lemma
count(ppred, N) > N — F
A okay_pairs(8,y, X, ppred)
A okay_Readpred(6, Z, ppred)
A okay_Readpred(, Z, ppred) A (¢frn 1p(p, 0) > cfrarrp(g,7))
D |efrprrn(p, ) — efrngrp(g, 7)l < ftomid_Pi(X, Z)

ft_mid_eq: Lemma count(ppred, N) > N — F
A okay_pairs(8, v, X, ppred)
A okay_Readpred(8, Z, ppred)
A okay_Readpred(y, Z, ppred) A (cfrasrp(p,0) = cfnarrp(a,7))
D |efrnrrp(p, 0) — efragp(g, v)| < ftomid_Pi(X, Z)

ft_mid_prec_syml: Lemma
count(ppred, N) > N — F
A okay_pairs(8, v, X, ppred)
A okay_Readpred (8, Z, ppred)
A okay_Readpred(y, Z, ppred)
A ((BF+1) + Ov-F)) > (V(F+1) YWV -F)))
D (61 +On-F)) — (VFr)y T YN-IN S Z +2x X

mid_gt_imp_sel_gt: Lemma
(cfrprip(p, 0) > cfrarrn(a, 7))
D ((Or41) + Ov-F)) > (YF+1) T Y(N-F)))

okay_pairs_sym: Lemma
okay_pairs(6, v, X, ppred) D okay_pairs(v, 8, X, ppred)

Proof

ft_mid_prec_sym1_pr: Prove ft_mid_prec_syml from
good_between,
okay_pair_geq_F_add1,
good_less_NF {¢ — ~},
abs_geq
{z < (7(21©p2) — 7(pQ@p3)) + (6(pQ@pl) — 7(pQp1))
+ (6(p1@p2) — 7(91@p2)),
Yy —OFs1) +Ov-r)) — (VF+1) + Yv-F)) }
abs_plus
{z < (7(01@p2) — 7(p@p3)) + (6(p@pl) — v(p@p1)),
y < (0(p1@p2) — 7(2:@p2))},
abs_plus {z — (7(q1@p2) — v(p@p3)), y — (6(p@p1) — 7(p@p1))},
okay_pairs {y — 0, 8 — v, z «— X, p3 « p@pl},
okay_Readpred {y — v, y — Z, | — ¢1©@p2, m — p@p3},
distrib {z — 1, y«~ 1, z — X},
mult_lident {z — X}
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mid_gt_imp_sel_gt_pr: Prove mid_gt_imp_sel_gt from
cfrprrp {9 — 0},
cfrpyrrp {0 — v, p—a}
mult_div {:I: — (9(F+1) + o(N—F))' Y — 2},
mult_div {z — (Y(F41) + Y(~v-F)), ¥ < 2},
mult_floor gt {z — zQ@p3/2, y — z@p4/2, z — 2}

ft_mid_eq_pr: Prove ft_mid_eq from
count_exists {n — N},
ft_mid_maxfaults,
okay_pairs {y — 0, 0 «— v, z « X, p3 — pQ@pl},
okay.Readpred {v «— v, y «— Z, | «— pQpl, m « p@pl},
| % 1| {z — cfrprip(p, 0) — cfrarrn(e,7)}
| *1| {z < 7(p@p1) — 7(p@p1)},
| %1] {z < 6(p@pl) — v(p@pl)},
ceil_defn {z — Z/2+ X},
div_nonnegative {z — Z, y — 2}

ft_mid_prec_enh_sym_pr: Prove ft_mid_prec_enh_sym from

cfapgp {9 — 6},
cfrarip {9 < 7. p <},
div_minus_distrib
{z « (OF+1) + Ov-F)),
¥y — (YF+1) T 1N-F))»
z «— 2},
abs_div
{z « (OF41) + Ov-F)) — (V(F+1) T YWv=F)),
y <2},
ft_mid_prec_syml,
mid_gt_imp_sel_gt,
div_ineq
{z < |(0F+1) + Ov-F)) — (YF+1) + Yv-F))]
y—2Z+2xX,
z « 2},
div_distrib {zt — Z, y — 2x X, z — 2},
div_cancel {z «— 2, y — X},
abs_floor_sub_floor_leq_ceil
{z « z@p3/2,
y < y@p3/2,
z—Z/2+ X}

okay_pairs_sym_pr: Prove okay_pairs_sym from
okay_pairs {y — 0, 0 — v, z — X, p3 — p3@p2},
okay_pairs {y — v, 0 — 0, z — X},
abs_com {z « 8(p3@p2), y « v(p3@p2)}



ft_mid_precision_enhancement_pr: Prove ft_mid_precision_enhancement from
ft_mid_prec_enh_sym,
ft_mid_prec_enh_sym
{p < ¢q@p1,

q < pQpl,

0 — vQpl,

v < 6@pl},
ft_mid_eq,
okay_pairs_sym,
abs_com {& « cfnprp(p,0), v — cfrprrp(a,7)}

okay_pair_geq_F_add1_pr: Prove
okay_pair_geq_F_add1
{p « if (6(p@p2) > 6(p@pl))
then p@p2
“elsif (v(p@pl) > v(p@p2)) then p@pl else p@p3
end 1if,
q1 — if (6(p@p2) > 6(p@pl))
then p@p2
elsif (7(p@pl) > v(p@p2)) then pQ@pl else ¢@p3
end if} from
good_geq_F_addl {J — 6},
good_geq_F_addl {9 « v},
exchange_order {p — p@pl, ¢ «— pQ@p2},
okay_pairs {y « 8, 6 — v, z « X, p3 « pQpl},
okay_pairs {y «— 8, 6 — v, z — X, p3 « pQ@p2}

good_geq_F_addl_pr: Prove good_geq_F_addl {p — p@pl} from
count_exists
{ppred — (Ap: ((ppred1@p2)p) A ((ppred2@p2)p)),
n — N},
pigeon_hole
{n < N,
k1,
ppredl «— ppred,
ppred2 — (Ap: 9(p) 2 I((raps)))}
count_geq_select {k — F + 1},
ft_mid_maxfaults
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good_between_pr: Prove good_between {p — p@pl} from
count_exists
{ppred «— (A p: ((ppred1@p2)p) A ((ppred2@p2)p)),
n — N},
pigeon_hole
{n < N,
k1,
ppredl «— (A p: ((ppred1@p3)p) A ((ppred2@p3)p)),
ppred2 — (A p: 0(p) > O(kapa)))},
pigeon_hole
{n < N,
k — k@p5,
ppredl — ppred,
ppred2 — (A p: y(kaps)y) = 7(P))},
count_geq.select {9 — 8, k — N — F},
count_leq_select {¢ — v, k — F + 1},
No_authentication

exchange_order_pr: Prove exchange_order from
okay_pairs {y — 6, 0 — v, z — X, ps — p},
okay_pairs {y — 6, 0 — v, z — X, p3 — g},
abs_geq {z — (8(p) —7(p)). y <~ 0(p) — 7(9)},
abs_geq {z — (v(¢) — 8(9)), ¥ —7(9) - 6(p)},
abs_com {z — 6(q), y — v(¢)}.
abs_com {z « 6(p), v — v(q)}

End mid3
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C.5 mid4

mid4: Module

Using arith, clockassumptions, mid3
Exporting all with clockassumptions, mid3
Theory

process: Type is nat

Clocktime: Type is integer

m, 1, Py q, P15 q1: Var process

t,J, k: Var posint

z,y,2,7,8,1t: Var time

D,X,Y,Z,R,S,T: Var Clocktime

4,8,~: Var function[process — Clocktime]

ppred, ppredl, ppred2: Var function[process — bool]

ft_mid_accuracy_preservation: Lemma
ppred(g) A count(ppred, N) > N — F A okay_Readpred(¥, X, ppred)

D lefaprp(p,9) — ()| £ X
ft_mid_less: Lemma cfryp(p, 9) < (i)
ft_mid_greater: Lemma cfryp(p,9) > dv-rF)

abs_q_less: Lemma
4count(ppred, N)> N —F D (3p;:ppred(p1) A9(p1) < cfnprrp(p, )

abs_q_greater: Lemma
count(ppred, N) > N — F' > (3 p1 : ppred(p1) A ¥(p1) > cfmprrp(p, 9))

ft_mid_bnd_by_good: Lemma
count(ppred, N) > N — F
D (31 : ppred(p1) A |efrpgrp(p, 9) — Ha)| < [9(p1) — I(9)])

maxfaults_lem: Lemma F+1< N — F
ft_select: Lemma Y (ry1) > dv-_F)
Proof

ft_select_pr: Prove ft_select from
select_ax {¢ — F+ 1, k — N — F}, maxfaults_lem

maxfaults_lem_pr: Prove maxfaults_lem from ft_mid_maxfaults
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ft_mid_bnd_by_good_pr: Prove
ft_mid_bnd_by_good
{p1 — (if efnprp(p,?) > 9(q) then p;@pl else p;@p2 end if)} from
abs_q_greater,
abs_q_less,
abs_com {z «— 9(q), y «— ¥(p:1Qc)},
abs_com {z — 9(a), ¥ — cfuprrp(ps 9)},
abs_geq {z «— zQ@p3 — y@p3, y — zQ@p4 — yQp4},
abs_geq {z — ¥(p1@c) — ¥(q), y — cfrmprrp(p,¥) — F(q)}

abs_q_less_pr: Prove abs_q_less {p; — p@pl} from
good_less_NF, ft_mid_greater

abs_q_greater_pr: Prove abs_q_greater {p; — p@pl} from
good_greater_F1, ft_mid_less

mult_hack: Lemma X + X =2x X
mult_hack_pr: Prove mult_hack from x1 x*x2 {z «— 2, y — X}

ft_mid_less_pr: Prove ft_mid_less from
cfrprp
ft_select,
div_ineq
{z = (O@Ftr) + 9v-r))

¥ = (Fe1) + Fpen)),

z — 2},
div_cancel {z « 2, y < dry1)},
mult_hack {X « d(pi1)},
floor_defn {2 «— xz@p3/2}

ft_mid_greater_pr: Prove ft_mid_greater from
cfrprp
ft_select,
div_ineq
{z « (I v-F) + I N-F)),

¥y — (IFp41) + Iv-F)),

z « 2},
div_cancel {z < 2, y — dnv_F)},
mult_hack {X < dn_F)},
floor_-mon {z «— z@p3/2, y — y@p3/2},
floor_int {i «— X@p5}

ft_mid_acc_pres_pr: Prove ft_mid_accuracy_preservation from

ft_mid_bnd_by_good,
okay_Readpred {7y «— ¥, y «— X, | « p;@pl, m «— ¢qQc}

End mid4



C.6 select_defs

select_defs: Module

Using arith, countmod, clockassumptions, clocksort
Exporting all with clockassumptions

Theory

process: Type is nat

Clocktime: Type is integer

l,m,n,p,q: Var process

9¥: Var function[process — Clocktime]

1,7, k: Var posint

T,X,Y,Z: Var Clocktime

*1(42): function[function[process — Clocktime], posint — Clocktime] ==

(A9, : I(funsort(F)(4)))

select_trans_inv: Lemma k < N D (Aq:9(q) + X)) =9 + X

select_existsl: Lemma i < N D (3p:p < N Ad(p) =9y;))

select_exists2: Lemma p < N D (Ji:3 < N AJ(p) = Vy))

select_ax: Lemma 1 <:AZi<kAk <N DYy > Iy

count_geq_select: Lemma k < N D count((Ap:9(p) > du)),N) > k

count_leq_select: Lemma k < N D count((Ap:9dx) > 9(p)),N)> N -k +1
Proof

select_trans_inv_pr: Prove select_trans_inv from funsort_trans_inv

select_existsl_pr: Prove select_existsl {p — funsort(9)()} from
funsort_fun_1.1 {j « i}

select_exists2_pr: Prove select_exists2 {¢ — ¢@pl} from funsort_fun_onto
select_ax_pr: Prove select_ax from funsort_ax {: « i@c¢, j « kQc}
count_leq_select_pr: Prove count_leq_select from cnt_sort_leq
count_geq_select_pr: Prove count_geq_select from cnt_sort_geq

End select_defs
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C.7 ft_mid_assume
ft_mid_assume: Module
Using clockassumptions
Exporting all with clockassumptions
Theory
ft_mid_maxfaults: Axiom N > 2x F +1
No_authentication: Axiom N >3+ F +1

Proof

ft_mid_maxfaults_pr: Prove ft_mid_maxfaults from No_authentication

End ft_mid_assume
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C.8 clocksort

clocksort: Module

Using clockassumptions

Exporting all with clockassumptions
Theory

l,m,n,p,q: Var process
t,J,k: Var posint
X,Y: Var Clocktime
9: Var function[process — Clocktime]
funsort: function[function[process — Clocktime]
— function[posint — process]]
(* clock readings can be sorted *)

funsort_ax: Axiom : < jA j < N D d(funsort(F)(¢)) > H(funsort(d)(7))

funsort_fun_1_1: Axiom
t < N Aj < N Afunsort(9)(¢) = funsort(9)(j) D ¢ = j A funsort(d)(¢) < N

funsort_fun_onto: Axiom p < N D (3Ji:¢ < N Afunsort(9)(2) = p)

funsort_trans_inv: Axiom
k < N D (I(funsort(( A g : 9(q) + X))(k)) = d(funsort(9)(k)))

cnt_sort_geq: Axiom k < N D count(( Ap: 9(p) > d(funsort(9)(k))),N) > k

cnt_sort_leq: Axiom
k < N D count(( Ap: d(funsort(9)(k)) > 9(p)),N)> N -k +1

Proof

End clocksort



Appendix D

Utility Modules

This appendix contains the EEDM utility modules required for the clock synchronization
proofs. Most of these were taken from Shankar’s theory [7]. The induction modules are
from Rushby’s transient recovery verification [3]. Module countmod was substantially
changed in the course of this verification and is therefore much different from Shankar’s
module countmod. Also, module floor_ceil added a number of useful properties required to

support the conversion of Clocktime from real to integer.!

1In Shankar’s presentation Clocktime ranged over the reals.
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D.1 multiplication

multiplication: Module
Exporting all
Theory

T,Y, 2, T1, Y1, 21, T2, Y2, 20 Var number
*1 % x2: function[number, number — number] = (A z,y: (z * y))

mult_ldistrib: Lemma zx(y+ 2)=zxy+ 2z %2
mult_ldistrib_minus: Lemma zx(y — 2) =z *xy— T %2
mult_rident: Lemma zx1 =2
mult_lident: Lemma 1lxz =z
distrib: Lemma (z + y)x2 =T *x2+ y*xz
distrib_minus: Lemma (z —y)*z2 =22 —-y*xz
mult_non_neg: Axiom ((z >0Ay>0)V(z<0Ay<0) e zxy>0
mult_pos: Axiom ((z >0Ay>0)V(z<0Ay<0))ezxy>0
mult_com: Lemma zxy = y*z
pos_product: Lemma > 0Ay>0D2%xy >0
mult_leq: Lemma 2 > 0Az > yDzxz>2y%x=z
mult_leq.2: Lemma 2 > 0Az >y D2zxx > 2%y
mult_10: Axiom O0xz =0
mult_gt: Lemma 2z >0Az>yDTc*x2>y*xz2
Proof

mult_gt_pr: Prove mult_gt from
mult_pos {z — z — y, y « 2z}, distrib_minus

distrib_minus_pr: Prove distrib_minus from
mult_Ildistrib_minus {z «— 2, y — z, z « y},
mult.com {z — z —y, y « z},
mult_com {y < z},
mult_com {z « y, y « z}
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mult_leq_2_pr: Prove mult_leq_2 from
mult_ldistrib_minus {z « 2, y «— z, 2z « y},
mult_non_neg {z — 2z, y — z — y}

mult_leq_pr: Prove mult_leq from
distrib_minus, mult_non_neg {z «— z — y, y « 2z}

mult_com_pr: Prove mult_.com from x1 x 2 , x1x*x2 {z «— y, y «— z}
pos_product_pr: Prove pos_product from mult_non_neg
mult_rident_proof: Prove mult_rident from x1 x %2 {y — 1}
mult_lident_proof: Prove mult_lident from x1 xx2 {z — 1, y « z}

distrib_proof: Prove distrib from
*lxx2 {x —z+ vy, y«— 2z},
*1 % x2 {y « 2},
x1x*x2 {z —y, y — 2z}

mult_ldistrib_proof: Prove mult_ldistrib from
*1xx2 {y —y+ 2, = —z}, 1 x*x2, x1 %x*2 {y « 2}

mult_ldistrib_minus_proof: Prove mult_ldistrib_minus from
*1xx2 {y —y—2z, = —z}, x1**2, x1 %x*2 {y « 2}

End multiplication



D.2 division

division: Module

Using multiplication, absmod, floor_ceil

Exporting all

Theory
T, Y, 2, T1, Y1, 21, L2, Y2, Z2° Var number
mult_div_.1: Axiom z Z0D zxy/z =z x (y/2)
mult_div.2: Axiom z Z0D zxy/z=(z/2)*xy
mult_div_3: Axiom z # 0D (z/2) =1
mult_div: Lemma y # 0D (z/y)xy ==z
div_cancel: Lemma z #0D zxy/z =y
div_distrib: Lemma z # 0D ((z + y)/2) = (z/2) + (y/2)
ceil_mult_div: Lemma y > 0D [z/y|xy >z
ceil_plus_mult_div: Lemma y > 0D [z/y]| + 1xy > 2
div_nonnegative: Lemma z > 0Ay >0D> (z/y) >0
div_minus_distrib: Lemma 2z # 0D (z — y)/z = (z/2) — (y/2)
div_ineq: Lemma z > 0Az <y D (z/2) < (y/2)
abs_div: Lemma y > 0 D |z/y| = |z|/y
mult_minus: Lemma y # 0 D —(z/y) = (—z/y)
div_minus_1: Lemma y > 0A2 < 0D (z/y) <0

Proof

div_nonnegative_pr: Prove div_nonnegative from
mult_non_neg {z «— ( if y # 0 then (z/y) else 0 end if)}}, mult_div
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div_distrib_pr: Prove div_distrib from
multdiv.l {z —z+y, y—1, z « 2},
mult_rident {z — = + y},
multdiv.l {z — z, y — 1, z « 2},
mult_rident,
multdiv.l {z « y, y — 1, z « 2},
mult_rident {z «— y},
distrib {z « (if 2 # 0 then (1/2) else 0 end if)}

div_cancel_pr: Prove div_cancel from
mult_div_2 {z « z}, multdiv.3 {z < z}, mult_lident {z — y}

mult_div_pr: Prove mult_div from
mult_div.2 {z « y}, mult_div_1 {z « y}, mult_div.3 {z « y}, mult_rident

abs_div_pr: Prove abs_div from
| x1| {x « (if y # 0 then (z/y) else 0 end if)},
| 1],
div_nonnegative,
div_minus_1,
mult_minus

mult_minus_pr: Prove mult_minus from
mult_div_l {z « -1, y « 2z, z « y},
*1%*2 {z « -1, y < z},
*x1x*2 {z « —1, y — (if y # 0 then (z/y) else 1 end if)}

div_minus_1_pr: Prove div_minus_1 from
mult_div,
pos_product {z — ( if y # 0 then (2/y) else 0 end if), y « y}

div_minus_distrib_pr: Prove div_minus_distrib from
div_distrib {y «— —y}, mult_minus {z « y, y « 2z}

div.ineq.pr: Prove div.ineq from
mult_div {y < z},
multdiv {z «— y, y « z},
mult_gt
{z «— (if z # 0 then (z/2) else 0 end if),
y — (if z # 0 then (y/z) else 0 end if)}

ceil_plus_mult_div_proof: Prove ceil_plus_mult_div from
ceil_mult_div,
distrib
{z « [(if y # 0 then (2/y) else 0 end if)],
y— 1
z <y},
mult_lident {z « y}
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ceil_mult_div_proof: Prove ceil_mult_div from
mult_div,
mult_leq
{z — [(if y # 0 then (2/y) else 0 end if)],
y — (if y # 0 then (2/y) else 0 end if),
z—y},
ceil_defn {z — ( if y # 0 then (z/y) else 0 end if)}

End division



D.3 absmod

absmod: Module
Using multiplication
Exporting all
Theory

T,Y,%,T1,Y1, 21, T2, Y2, 22: Var number

X: Var integer

| x 1|: Definition function[number — number] =
(Mz:(if 2 <0 then — 2z else z end if))

iabs: Definition function[integer — integer] =
(AX :(if X <0 then — X else X end if))

iabs_is_abs: Lemma 2z = X D iabs(X) = |z|

abs_main: Lemma |z| < 2D (z < 2V —z < 2)

abs_leq0: Lemma |z —y|<zD(z—-y) < z

abs_diff: Lemma [z —y|< 2D ((z—y)<zV(y—2) < 2)
abs_leq: Lemma |z| < zD (2 <2V -z < 2)

abs_bnd: Lemma 0< 2A0<2A2<2A0<yAy<zD|z—y| <Lz
abs_.1bnd: Lemma |z —y|<z2Dz<y+z2

abs 2 bnd: Lemma |z —y|<2Dz>y—=2

abs_ 3 bnd: Lemma z <y+z2Az>y—2zD|lz—y| <2
abs_drift: Lemma [z —y| < zA|z1—z|<z1 D1 —y|<z+ =
abs_com: Lemma |z — y| = |y — z|

abs_drift_2: Lemma
lz—yl<2zA |z —z|<aA|lpn—y <Dl —nllz+z1+ 2

abs_geq: Lemmaz > yAy>0D|z| > |y|

abs_ge0: Lemma z > 0D |z] ==z

abs_plus: Lemma |z + y| < |z| + |y|

abs_ diff 3: Lemmaz —y<z2Ay—z<z2zD|lz—-y|<z2

Proof
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iabs_pr: Prove iabs_is_abs from | x 1| , iabs

abs_plus_pr: Prove abs_plus from | x1| {z «— z + y}, | x1|, |*1]| {z < y}
abs_diff_3_pr: Prove abs_diff_3 from | x 1| {z « =z — y}

abs_ge0_proof: Prove abs_ge0 from | x 1|

abs_geq_proof: Prove abs_geq from |x1|, |x1| {z « y}

abs_drift_2_proof: Prove abs_drift_2 from
abs_drift,
abs drift {z — y, y — 11, 2 — 22, 21 — 2+ 21},
abs_com {z — y1}

abs_com_proof: Prove abs_.com from | x1| {z « (z — y)}, | x1| {z « (y — 2)}

abs_drift_proof: Prove abs_drift from
abs_1_bnd,
abs_1bnd {z — 21, y — 2, z — 21},
abs_2_bnd,
abs. 2 bnd {z — 21, y — =, z — =1},
abs_3.bnd {z « 21, z — 2+ 21}

abs_3_bnd_proof: Prove abs_3_bnd from | x 1| {z « (z — y)}

abs_main_proof: Prove abs_main from | x 1|

abs_leq_0_proof: Prove abs_leq_0 from | x1| {z « z — y}

abs_diff_proof: Prove abs_diff from |x 1| {z — (z — y)}

abs_leq_proof: Prove abs_leq from | x 1|

abs_bnd_proof: Prove abs_bnd from |*x 1| {z « (z — y)}

abs_1_bnd_proof: Prove abs_1_bnd from | x 1| {z « (z — y)}

abs_2_bnd_proof: Prove abs_2_bnd from | x 1| {z — (z — y)}
End absmod
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D.4 floor_ceil

floor_ceil: Module

Using multiplication, absmod
Exporting all

Theory

1,7: Var integer
z,Y, 2,1, Y1, 21, T2, Y2, Z2: Var number
[*1]: function[number — int]

ceil_defn: Axiom [z] >zA[z]-1<z

|x1]: function[number — int]

floor_defn: Axiom [z| <zA|z]+1>=x

ceil_geq: Lemma [z] > z

ceil_mon: Lemma z > y D [z] > [y]

ceil_int: Lemma [i] = ¢

floor_leq: Lemma [2]| < z

floor_mon: Lemma z < y D |z]| < |y]

floor_int: Lemma |[i] = i

ceil_plus_i: Lemma [z] +i>z+iA[z] +i—1<z+i
ceil_plus_int: Lemma [z] + ¢ = [z + 7]

int_plus_ceil: Lemma i + [z] = [i + 2]

floor_plus_i: Lemma |z| +i<z+iA|z]+i+1>z+1
floor_plus_int: Lemma |z| + i = |z + ¢]
neg_floor_eq_ceil_neg: Lemma —|z| = [—2]
neg_ceil_eq_floor_neg: Lemma —[z] = |—z]

ceil_sum: Lemma [2] + [y] < [z +y] +1

abs_ceil sum: Lemma |[z] + [y]| <[z + ]|+ 1
floor_sub_floor_leq_ceil: Lemma =z —y < z D |z| — |y] < [7]

abs_floor_sub_floor_leq_ceil: Lemma |z — y| < z D ||z] — |y]] < [#]
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floor_gt_imp_gt: Lemma |z| > |y| Dz >y
mult_floor gt: Lemma 2z > 0A |z] > |y} Dz 2> y*xz
Proof
mult_floor_gt_pr: Prove mult_floor_gt from floor_gt_imp_gt, mult_gt

floor_gt_imp_gt_pr: Prove floor_gt_imp_gt from
floor_defn, floor_defn {z «— y}

floor_sub_floor_leq_ceil_pr: Prove floor_sub_floor_leq_ceil from
floor_defn, floor_defn {z — y}, ceil_defn {z — z}

abs_floor_sub_floor_leq_ceil_pr: Prove abs_floor_sub_floor_leq_ceil from
floor_defn,
floor_defn {z — y},
ceildefn {z « z},
| %1| {z « z -y},
| %1 {z — [=] — [y]}

int_plus_ceil_pr: Prove int_plus_ceil from ceil_plus_int

ceil_geq_pr: Prove ceil_geq from ceil_defn

ceil_mon_pr: Prove ceil_mon from ceil_defn, ceil_defn {z — y}
floor_leq_pr: Prove floor_leq from floor_defn

floor_mon_pr: Prove floor_mon from floor_defn, floor_defn {z — y}
ceil_eq_hack: Sublemma:>zAi—-1<zAj>zAj—-1<zDi=j
ceil_eq_hack_pr: Prove ceil_eq_hack

ceil_plus_i_pr: Prove ceil_plus_i from ceil_defn

ceil_plus_int_pr: Prove ceil_plus_int from
ceil_plus_i,

ceil_defn {z «— z + i},
ceil_eq-hack {z — 2414, i — [z]| + 14, j « [z +¢]}

floor_eq_hack: Sublemma i< zAt1+1>zAj<zAJ+1>xDet=7]
floor_eq_hack_pr: Prove floor_eq_hack

floor_plus_i_pr: Prove floor_plus_i from floor_defn
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floor_plus_int_pr: Prove floor_plus_int from

floor_plus._i,
floor_defn {z — z + ¢},
flooreq_hack {z — x +4, i — |z| +14, j— [z + ]}

neg_floor_eq_ceil_neg_pr: Prove neg_floor_eq_ceil_neg from
floor_defn, ceil_defn {z «— —z}

neg.ceil_eq_floor_neg_pr: Prove neg_ceil_eq_floor_neg from
floor_defn {z «— —z}, ceil_defn

ceil_sum_pr: Prove ceil_sum from
ceil_defn {z — z + y}, ceil_defn {z «— y}, ceil_defn

abs_ceil_sum_pr: Prove abs_ceil_sum from

| x1| {z — [2] + 9]},
| x1| {z < [z + 9]},
ceil_defn {z — z + y},
ceil_defn {z — y},
ceil_defn

ceil_int_pr: Prove ceil_.int from ceil_defn {z — i}
floor_int_pr: Prove floor_int from floor_defn {z «— ¢}

End floor_ceil
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D.5 natinduction

natinduction: Module
Theory

t,j, m, my, n: Var nat
p, prop: Var function[nat — bool]

induction: Theorem (prop(0) A (VY j : prop(j) D prop(j + 1))) D prop(7)

complete_induction: Theorem
(Vi:(Vi:3<iDp(4))dp(E) D (Vn:p(n))

induction_.m: Theorem
p(m)A(Vi:i2>2mAp(H) Dp(i+1))D(VYnrn:n>mDp(n))

limited_induction: Theorem
(m<my Dp(m)A(Vi:i>mAi<mi Ap(i) D p(i+1))
D(Vn:n>mAn<mg D pn))

Proof
Using noetherian
less: function[nat,nat — bool] == (Am,n: m < n)

instance: Module is noetherian[nat, less]
z: Var nat
identity: function[nat — nat] == (A n:n)

discharge: Prove well_founded {measure < identity}

complete_ind_pr: Prove complete_induction {i «— d;@pl} from
general_induction {d < n, dy <« j}

ind_proof: Prove induction {j — pred(d;@pl)} from
general_induction {p «— prop, d — i, d2 « j}

(* Substitution for n in following could simply be n <- n-m
but then the TCC would not be proveable *)

ind_m_proof: Prove induction_.m {i «— j@pl + m} from
induction
{prop — (A z : p@c(z + m)),
i — if n > m then n — m else 0 end if}

limited_proof: Prove limited_induction {: < {@pl} from
induction_m {p — (Az: 2 < my D pQc(z))}
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(*

(x These results can also be proved the other way about but the
TCCs are more complex *)

alt_ind_m_proof: PROVE induction_m {i <- d1@pl + m - 1} FROM
general_induction
{d <-n - m,
d2 <- i - m,
p <- (LAMBDA x : pQc(x + m))}

alt_ind_proof: PROVE induction {i <- i@p1 - m@pi1l} FROM
induction_m {p <- (LAMBDA x : p@c(x - m)), n <- n@c + m}
*)

End natinduction
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D.6 noetherian

noetherian: Module [dom: Type, <: function[dom, dom — bool]]
Assuming

measure: Var function[dom — nat|
a,b: Var dom

well_founded: Formula ( 3 measure : @ < b D measure(a) < measure(b))
Theory

p, A, B: Var function[dom — bool]
d,d;,ds: Var dom

general_induction: Axiom
(Vdy:(Vdy:dy < dy Dp(dz)) D p(dr)) D (Vd:p(d))

ds,dy: Var dom

mod_induction: Theorem
(Vd3,d4 tdg <dz D A(dg) D A(d4))
A (le : (Vd2 : d2 < d]_ D (A(dl) A B(dz))) D B(dl))
D (Vd: A(d) D B(d))

Proof

mod_proof: Prove mod._induction
{dl — Cll@pl,
d3 — dl@pl,
dy — dy} from general_induction {p — (Ad: A(d) D B(d))}

End noetherian
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D.7 countmod
countmod: Module
Exporting all
Theory

71: Var int
posint: Type from nat with (A¢; : 43 > 0)
l? m,n,p,4q,P1, P2, 91,92, P3, 43" Var nat
t,j, k: Var nat
z,Y,2,7,8,t: Var number
X,Y, Z: Var number
ppred, ppredl, ppred2: Var function[nat — bool]
9,8,~: Var function[nat — number]
countsize: function{function[nat — bool], nat — nat] = ( A ppred, i : ¢)
count: Recursive function[function[nat — bool], nat — nat] =
(Appred,i:(ifi>0
then ( if ppred(i — 1)
then 1 + (count(ppred,i — 1))
else count(ppred,i — 1)
end if)
else 0
end if)) by countsize
(* Count Complement was moved from ica3 *)

count_complement: Lemma count(( A ¢ : —ppred(q)),n) = n — count(ppred, n)
count_exists: Lemma count(ppred,n) > 0D (I p: p < n A ppred(p))
count_true: Lemma count((Ap:true),n) =n

count_false: Lemma count{( Ap : false),n) =0

imp_pred: function[function[nat — bool], function[nat — bool] — bool] =
(A ppredl, ppred2 : (V p : ppred1(p) D ppred2(p)))

imp_pred_lem: Lemma imp_pred(ppredl, ppred2) O (ppred1(p) D ppred2(p))
imp_pred_or: Lemma imp_pred(ppredl, (A p : ppred1(p) V ppred2(p)))

count_imp: Lemma imp_pred(ppred1, ppred2)
D count(ppredl,n) < count(ppred2,n)

count_or: Lemma count(ppredl,n) > k
D count(( A p: ppredl(p) V ppred2(p)),n) > k

count_bounded_imp: Lemma count((Ap : p < n D ppred(p)),n) = count(ppred, n)
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count_bounded_and: Lemma count(( A p: p < n A ppred(p)), n) = count(ppred, n)

pigeon_hole: Lemma
count(ppredl, n) + count(ppred2,n) > n+ &
D count(( A p : ppred1(p) A ppred2(p)),n) > k

predl, pred2: Var function[nat — bool]
pred_extensionality: Axiom (V p : pred1(p) = pred2(p)) D predl = pred2

(* these are in the theory section so the tcc module won’t complain *)
nk_type: Type = Record = : nat,
k : nat
end record
nk, nkl, nk2: Var nk_type
nk_less: function[nk_type, nk_type — bool] ==
(Ankl,nk2 : nkl.n + nkl.k < nk2.n + nk2.k)

Proof
Using natinduction, noetherian
imp_pred_lem_pr: Prove imp_pred_lem from imp_pred {p — pQc}

imp_pred_or_pr: Prove imp_pred_or from
imp_pred {ppred2 — ( A p: ppred1(p) V ppred2(p))}

count_imp0: Lemma
imp_pred(ppredl, ppred2) D count(ppredl,0) < count(ppred2,0)

count_imp.ind: Lemma
(imp_pred(ppredl, ppred2) O count(ppredl,n) < count(ppred2,n))
D (imp_pred(ppredl, ppred2)
D count(ppredl, n + 1) < count(ppred2,n + 1))

count_imp0_pr: Prove count_imp0 from
count {¢ « 0, ppred « ppredl}, count {7 «— 0, ppred — ppred2}

count_imp_ind_pr: Prove count_imp_ind from
count {ppred «— ppredl, 7 — n+ 1},
count {ppred — ppred2, ; — n+ 1},
imp_pred {p — n}
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count_imp_pr: Prove count_imp from
induction
{prop — (A n:
(imp_pred(ppredl, ppred2) D count(ppredl, n) < count(ppred2,n))),
t < nQc},
count_imp0,
count_imp_ind {n « j@p1}

count_or_pr: Prove count_or from
count_imp {ppred2 — (A p: ppred1(p) V ppred2(p))}, imp_pred_or

count_bounded_imp0: Lemma
k>0Dcount((Ap:p <k D ppred(p)),0) = count(ppred, 0)

count_bounded_imp_ind: Lemma
(k>n D count((Ap:p <k D ppred(p)),n) = count(ppred, n))
D(k>2n+1
D count((Ap:p < k D ppred(p)),n + 1) = count(ppred,n + 1))

count_bounded_imp_k: Lemma
(k>n D count((Ap:p< k D ppred(p)),n) = count(ppred, n))

count_bounded_imp0_pr: Prove count_boundeyd_impO from
count {¢ «— 0}, count {ppred — (Ap:p < k D ppred(p)), 7 — 0}

count_bounded_imp_ind_pr: Prove count_bounded_imp_ind from
count {i — n + 1},
count {ppred — (Ap:p < k D ppred(p)), i — n+ 1}

count_bounded_imp_k_pr: Prove count_bounded_imp_k from
induction
{prop — (An:
k>nDcount((Ap:p< k D ppred(p)),n) = count(ppred, n)),
i — n},
count_bounded_imp0,
count_bounded_imp_ind {n — jQ@Qpl}

count_bounded_imp_pr: Prove count_bounded_imp from
count_bounded_imp_k {k «— n}

count_bounded_and0: Lemma
k>0Dcount((Ap:p< kA ppred(p)),0) = count(ppred, 0)

count_bounded_and_ind: Lemma
(k>mn D count(( Ap:p < k A ppred(p)),n) = count(ppred, n))
D(k>n+1
D count((Ap:p < k Appred(p)),n+ 1) = count(ppred,n + 1))
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count_bounded_and_k: Lemma
(k>mn D count((Ap:p < kA ppred(p)),n) = count(ppred, n))

count_bounded_and0_pr: Prove count_bounded_and0 from
count {z < 0}, count {ppred — (Ap:p < k A ppred(p)), i — 0}

count_bounded_and_ind_pr: Prove count_bounded_and_ind from
count {i — n + 1},
count {ppred — (Ap:p < k Appred(p)), i —n+1}

count_bounded_and_k_pr: Prove count_bounded_and_k from
induction
{prop — (An:
k>n D count((Ap:p < kA ppred(p)),n) = count(ppred, n)),
i« n},
count_bounded_and0,
count_bounded_and_ind {n — jQ@Qpl}

count_bounded_and_pr: Prove count_bounded_and from
count_bounded_and_k {k — n}

count_false_pr: Prove count_false from
count_true,
count_complement {ppred «— (A p: true)},
pred_extensionality
{predl « (A p: —true),
pred2 — (A p: false)}

cc0: Lemma count(( A g : ~ppred(q)),0) = 0 — count(ppred, 0)

cc.ind: Lemma (count(( Agq : —ppred(q)),n) = n — count(ppred, n))
D (count(( A q : ~ppred(q)),n+ 1) = n + 1 — count(ppred, n + 1))

ccO_pr: Prove ¢c0 from
count {ppred — (A g :-ppred(q)), i — 0}, count {i — 0}

cc_ind_pr: Prove cc.ind from
count {ppred — (Agq: —-ppred(q)), : — n+ 1}, count {s — n+ 1}

count_complement_pr: Prove count_complement from
induction
{prop — (A n : count(( Aq: —ppred(q)),n) = n — count(ppred, n)),
i+ n},
cc0,
cc.ind {n « jQpl}

instance: Module is noetherian[nk_type, nk_less]
nk_measure: function[nk_type — nat] == ( A nkl : nkl.n + nkl.k)



nk_well_founded: Prove well_founded {measure «— nk_measure}

nk_ph_pred: function[function[nat — bool], function[nat — bool], nk_type
— bool] =
( A ppredl, ppred2, nk :
count(ppredl, nk.n) + count(ppred2, nk.n) > nk.n + nk.k
D count(( A p : ppred1(p) A ppred2(p)), nk.n) > nk.k)
nk_noeth_pred: function[function[nat — bool], function[nat — bool],
nk_type — bool] =
( A ppredl, ppred2, nkl :
(V nk2 : nk_less(nk2, nk1) D nk_ph_pred(ppredl, ppred2, nk2)))

ph_casel: Lemma count(( A p : ppred1(p) A ppred2(p)), pred(n)) > k
D count(( A p: ppredl(p) A ppred2(p)),n) > k

ph_casel_pr: Prove ph_casel from
count {ppred — (A p:ppred1(p) A ppred2(p)), i «— n}

ph_case2: Lemma count(ppredl, pred(n)) + count(ppred2, pred(n)) < pred(n) + k

A count(ppredl, n) + count(ppred2,n) > n + k
A count(( A p : ppred1(p) A ppred2(p)), pred(n)) > pred(k)
D count(( A p : ppred1(p) A ppred2(p)),n) > k

ph_case2a: Lemma count(ppredl, pred(n)) + count(ppred2, pred(n)) < pred(n) + &

A count(ppredl, n) + count(ppred2,n) > n + k
D ppredl(pred(n)) A ppred2(pred(n))

ph_case2b: Lemma n > 0

A k > 0 A count(ppredl, pred(n)) + count(ppred2, pred(n)) < pred(n) + k

A count(ppredl, n) + count(ppred2,n) > n + k

D count(ppredl, pred(n)) + count(ppred2, pred(n)) > pred(n) + pred(k)

ph_case2a_pr: Prove ph_case2a from
count {ppred — ppredl, ¢ «— n}, count {ppred — ppred2, i — n}

ph_case2b_pr: Prove ph_case2b from
count {ppred « ppredl, ¢ «— n}, count {ppred — ppred2, i «— n}

ph_case2_pr: Prove ph_case2 from
count {ppred «— (A p: ppredl(p) A ppred2(p)), i «— n}, ph_case2a

ph_case0: Lemma (n =0V k = 0)
O (count(ppredl, n) + count(ppred2,n) > n + k
D count(( Ap : ppred1l(p) A ppred2(p)),n) > k)

ph_caseOn: Lemma (count(ppredl,0) + count(ppred2,0) > k
D count(( A p: ppred1(p) A ppred2(p)),0) > k)

151
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ph_caseOn_pr: Prove ph_caseOn from
count {ppred — ppredl, ¢ — 0},
count {ppred — ppred2, i — 0},
count {ppred «— (A p: ppredl(p) A ppred2(p)), 7 «— 0}

ph_caseOk: Lemma count({ A p : ppred1(p) A ppred2(p)),n) > 0

ph_caseOk_pr: Prove ph_case0k from
nat_invariant {nat_var «— count(( A p : ppred1(p) A ppred2(p)),n)}

ph_case0_pr: Prove ph_case0 from ph_caseOn, ph_caseOk

nk_ph_expand: Lemma
(Y n,k : (count(ppredl, pred(n)) + count(ppred2, pred(n)) > pred(n) + pred(k)
D count(( Ap : ppred1(p) A ppred2(p)), pred(n)) > pred(k))
A (count(ppredl, pred(n)) + count(ppred2, pred(n)) > pred(n) + k
D count(( A p : ppredl(p) A ppred2(p)), pred(n)) > k)
D (count(ppredl, n) + count(ppred2,n) > n + k
, D count(( A p: ppred1(p) A ppred2(p)),n) > k))

nk_ph_expand_pr: Prove nk_ph_expand from
ph_case0, ph_casel, ph_case2, ph_case2a, ph_case2b

nk_ph_noeth_hyp: Lemma
(V nkl : nk_noeth_pred(ppred1, ppred2, nkl)
D nk_ph_pred(ppredl, ppred2, nkl))

nk_ph_noeth_hyp_pr: Prove nk_ph_noeth_hyp from
nk_ph_pred {nk — nkl},
nk_noeth_pred {nk2 — nkl with [(n) := pred(nkl.n)]},
nk_noeth_pred {nk2 « nkl with [(n) := pred(nkl.n), (k) := pred(nk1.£)]},
nk_ph_pred {nk — nkl with [(n) := pred(nkl.n)]},
nk_ph_pred {nk — nkl with [(n) := pred(nkl.n), (k) := pred(nk1.£)]},
nk_ph_expand {n < nkl.n, k «— nkl.k},
ph_case0 {n — nkl.n, k «— nkl.k},
nat_invariant {nat_var — nkl.n},
nat_invariant {nat_var « nkl.k}

nk_ph_lem: Lemma nk_ph_pred(ppred1, ppred2, nk)

nk_ph_lem_pr: Prove nk_ph_lem from
general_induction
{p < (Ank : nk_ph_pred(ppred1, ppred2, nk)),
d,; — nk2@p3,
d — nkQc},
nk_ph_noeth_hyp {nkl — d,@p1},
nk_noeth_pred {nkl « d;@p1}
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pigeon_hole_pr: Prove pigeon_hole from
nk_ph_lem {nk « nk with [(n) := nQc, (k) := kQc]},
nk_ph_pred {nk «— nk@pl}

exists_less: function[function[nat — bool], nat — bool] =
(Appred,n: (3 p:p < nAppred(p)))

count_exists_base: Lemma count(ppred,0) > 0 D exists_less(ppred, 0)

count_exists_base_pr: Prove count_exists_base from
count {¢ — 0}, exists_less {n — 0}

count_exists_ind: Lemma
(count(ppred, n) > 0 D exists_less(ppred, n))
D (count(ppred,n + 1) > 0 D exists_less(ppred, n + 1))

count_exists_ind_pr: Prove count_exists_ind from
count {i — n + 1},
exists_less,
exists_less {n — n + 1, p « ( if ppred(n) then n else p@p2 end if)}

count_exists_pr: Prove count_exists {p — p@p4} from
induction
{prop «— (A n : count(ppred,n) > 0 D exists_less(ppred, n)),
i «— nQc},
count_exists_base,
count_exists_ind {n «— j@pl},
exists_less {n — (@pl}

count_base: Sublemma count(ppred,0) =0
count_base_pr: Prove count_base from count {i « 0}

count_true_ind: Sublemma
(count((Ap:true),n) =n) D count((Ap:true),n+1)=n+1

count_true_ind_pr: Prove count_true_ind from
count {ppred — (Ap:true), 1 — n+ 1}

count_true_pr: Prove count_true from
induction {prop «— (A n : count(( Ap :true),n) = n), ¢ — nQc},
count_base {ppred — (A p: true)},
count_true_ind {n «— j@pl}

End countmod
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